Correlating Optical Microspectroscopy with 4×4 Transfer Matrix Modeling for Characterizing Birefringent Van der Waals Materials.

Autor: Schwarz J; Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Electron Devices, Cauerstraße 6, 91058, Erlangen, Germany., Niebauer M; Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Electron Devices, Cauerstraße 6, 91058, Erlangen, Germany., Koleśnik-Gray M; Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Applied Physics, Staudtstraße 7, 91058, Erlangen, Germany., Szabo M; Fraunhofer Institute for Integrated Systems and Device Technology IISB, Schottkystraße 10, 91058, Erlangen, Germany., Baier L; Fraunhofer Institute for Integrated Systems and Device Technology IISB, Schottkystraße 10, 91058, Erlangen, Germany., Chava P; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328, Dresden, Germany., Erbe A; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328, Dresden, Germany., Krstić V; Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Applied Physics, Staudtstraße 7, 91058, Erlangen, Germany., Rommel M; Fraunhofer Institute for Integrated Systems and Device Technology IISB, Schottkystraße 10, 91058, Erlangen, Germany., Hutzler A; Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Electron Devices, Cauerstraße 6, 91058, Erlangen, Germany.; Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Cauerstraße 1, 91058, Erlangen, Germany.
Jazyk: angličtina
Zdroj: Small methods [Small Methods] 2023 Oct; Vol. 7 (10), pp. e2300618. Date of Electronic Publication: 2023 Jul 18.
DOI: 10.1002/smtd.202300618
Abstrakt: Van der Waals materials exhibit intriguing properties for future electronic and optoelectronic devices. As those unique features strongly depend on the materials' thickness, it has to be accessed precisely for tailoring the performance of a specific device. In this study, a nondestructive and technologically easily implementable approach for accurate thickness determination of birefringent layered materials is introduced by combining optical reflectance measurements with a modular model comprising a 4×4 transfer matrix method and the optical components relevant to light microspectroscopy. This approach is demonstrated being reliable and precise for thickness determination of anisotropic materials like highly oriented pyrolytic graphite and black phosphorus in a range from atomic layers up to more than 100 nm. As a key feature, the method is well-suited even for encapsulated layers outperforming state of-the-art techniques like atomic force microscopy.
(© 2023 The Authors. Small Methods published by Wiley-VCH GmbH.)
Databáze: MEDLINE