The Effects of a Simple Sensor Reorientation Procedure on Peak Tibial Accelerations during Running and Correlations with Ground Reaction Forces.

Autor: Bradach MM; Spaulding National Running Center, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Cambridge, MA 02138, USA., Gaudette LW; Spaulding National Running Center, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Cambridge, MA 02138, USA., Tenforde AS; Spaulding National Running Center, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Cambridge, MA 02138, USA., Outerleys J; Department of Mechanical and Materials Engineering, Queen's University, Kingston, ON K7L 3N9, Canada., de Souza Júnior JR; Spaulding National Running Center, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Cambridge, MA 02138, USA.; Faculty of Ceilandia, University of Brasilia, Brasilia 73340, Brazil., Johnson CD; Spaulding National Running Center, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Cambridge, MA 02138, USA.; Military Performance Division, United States Army Research Institute for Environmental Medicine, Natick, MA 01760, USA.
Jazyk: angličtina
Zdroj: Sensors (Basel, Switzerland) [Sensors (Basel)] 2023 Jun 30; Vol. 23 (13). Date of Electronic Publication: 2023 Jun 30.
DOI: 10.3390/s23136048
Abstrakt: While some studies have found strong correlations between peak tibial accelerations (TAs) and early stance ground reaction forces (GRFs) during running, others have reported inconsistent results. One potential explanation for this is the lack of a standard orientation for the sensors used to collect TAs. Therefore, our aim was to test the effects of an established sensor reorientation method on peak Tas and their correlations with GRFs. Twenty-eight runners had TA and GRF data collected while they ran at a self-selected speed on an instrumented treadmill. Tibial accelerations were reoriented to a body-fixed frame using a simple calibration trial involving quiet standing and kicking. The results showed significant differences between raw and reoriented peak TAs ( p < 0.01) for all directions except for the posterior ( p = 0.48). The medial and lateral peaks were higher (+0.9-1.3 g), while the vertical and anterior were lower (-0.5-1.6 g) for reoriented vs. raw accelerations. Correlations with GRF measures were generally higher for reoriented TAs, although these differences were fairly small (Δr 2 = 0.04-0.07) except for lateral peaks (Δr 2 = 0.18). While contingent on the position of the IMU on the tibia used in our study, our results first showed systematic differences between reoriented and raw peak accelerations. However, we did not find major improvements in correlations with GRF measures for the reorientation method. This method may still hold promise for further investigation and development, given that consistent increases in correlations were found.
Databáze: MEDLINE
Nepřihlášeným uživatelům se plný text nezobrazuje