Rapamycin and rapalogs for tuberous sclerosis complex.
Autor: | Sasongko TH; Department of Physiology, School of Medicine, International Medical University, Kuala Lumpur, Malaysia.; Institute for Research, Development, and Innovation, International Medical University, Kuala Lumpur, Malaysia., Kademane K; Department of Pharmacology, Arunai Medical College and Hospital, Tiruvannamalai, Tamilnadu, India., Chai Soon Hou S; Perdana University - Royal College of Surgeons in Ireland (RCSI) School of Medicine, Kuala Lumpur, Malaysia., Jocelyn TXY; Perdana University - Royal College of Surgeons in Ireland (RCSI) School of Medicine, Kuala Lumpur, Malaysia., Zabidi-Hussin Z; Faculty of Medicine, University of Cyberjaya, Selangor, Malaysia. |
---|---|
Jazyk: | angličtina |
Zdroj: | The Cochrane database of systematic reviews [Cochrane Database Syst Rev] 2023 Jul 11; Vol. 7. Cochrane AN: CD011272. Date of Electronic Publication: 2023 Jul 11. |
DOI: | 10.1002/14651858.CD011272.pub3 |
Abstrakt: | Background: Potential benefits of rapamycin or rapalogs for treating people with tuberous sclerosis complex (TSC) have been shown. Currently everolimus (a rapalog) is only approved for TSC-associated renal angiomyolipoma and subependymal giant cell astrocytoma (SEGA), but not other manifestations of TSC. A systematic review needs to establish evidence for rapamycin or rapalogs for various manifestations in TSC. This is an updated review. Objectives: To determine the effectiveness of rapamycin or rapalogs in people with TSC for decreasing tumour size and other manifestations and to assess the safety of rapamycin or rapalogs in relation to their adverse effects. Search Methods: We identified relevant studies from the Cochrane-Central-Register-of-Controlled-Trials (CENTRAL), Ovid MEDLINE and ongoing trials registries with no language restrictions. We searched conference proceedings and abstract books of conferences. Date of the last searches: 15 July 2022. Selection Criteria: Randomised controlled trials (RCTs) or quasi-RCTs of rapamycin or rapalogs in people with TSC. Data Collection and Analysis: Two review authors independently extracted data and assessed the risk of bias of each study; a third review author verified the extracted data and risk of bias decisions. We assessed the certainty of the evidence using GRADE. Main Results: The current update added seven RCTs, bringing the total number to 10 RCTs (with 1008 participants aged 3 months to 65 years; 484 males). All TSC diagnoses were by consensus criteria as a minimum. In parallel studies, 645 participants received active interventions and 340 placebo. Evidence is low-to-high certainty and study quality is mixed; mostly a low risk of bias across domains, but one study had a high risk of performance bias (lack of blinding) and three studies had a high risk of attrition bias. Manufacturers of the investigational products supported eight studies. Systemic administration Six studies (703 participants) administered everolimus (rapalog) orally. More participants in the intervention arm reduced renal angiomyolipoma size by 50% (risk ratio (RR) 24.69, 95% confidence interval (CI) 3.51 to 173.41; P = 0.001; 2 studies, 162 participants, high-certainty evidence). In the intervention arm, more participants in the intervention arm reduced SEGA tumour size by 50% (RR 27.85, 95% CI 1.74 to 444.82; P = 0.02; 1 study; 117 participants; moderate-certainty evidence) ,and reported more skin responses (RR 5.78, 95% CI 2.30 to 14.52; P = 0.0002; 2 studies; 224 participants; high-certainty evidence). In one 18-week study (366 participants), the intervention led to 25% fewer seizures (RR 1.63, 95% CI 1.27 to 2.09; P = 0.0001) or 50% fewer seizures (RR 2.28, 95% CI 1.44 to 3.60; P = 0.0004); but there was no difference in numbers being seizure-free (RR 5.30, 95% CI 0.69 to 40.57; P = 0.11) (moderate-certainty evidence). One study (42 participants) showed no difference in neurocognitive, neuropsychiatry, behavioural, sensory and motor development (low-certainty evidence). Total adverse events (AEs) did not differ between groups (RR 1.09, 95% CI 0.97 to 1.22; P = 0.16; 5 studies; 680 participants; high-certainty evidence). However, the intervention group experienced more AEs resulting in withdrawal, interruption of treatment, or reduced dose (RR 2.61, 95% CI 1.58 to 4.33; P = 0.0002; 4 studies; 633 participants; high-certainty evidence and also reported more severe AEs (RR 2.35, 95% CI 0.99 to 5.58; P = 0.05; 2 studies; 413 participants; high-certainty evidence). Topical (skin) administration Four studies (305 participants) administered rapamycin topically. More participants in the intervention arm showed a response to skin lesions (RR 2.72, 95% CI 1.76 to 4.18; P < 0.00001; 2 studies; 187 participants; high-certainty evidence) and more participants in the placebo arm reported a deterioration of skin lesions (RR 0.27, 95% CI 0.15 to 0.49; 1 study; 164 participants; high-certainty evidence). More participants in the intervention arm responded to facial angiofibroma at one to three months (RR 28.74, 95% CI 1.78 to 463.19; P = 0.02) and three to six months (RR 39.39, 95% CI 2.48 to 626.00; P = 0.009; low-certainty evidence). Similar results were noted for cephalic plaques at one to three months (RR 10.93, 95% CI 0.64 to 186.08; P = 0.10) and three to six months (RR 7.38, 95% CI 1.01 to 53.83; P = 0.05; low-certainty evidence). More participants on placebo showed a deterioration of skin lesions (RR 0.27, 95% CI 0.15 to 0.49; P < 0.0001; 1 study; 164 participants; moderate-certainty evidence). The intervention arm reported a higher general improvement score (MD -1.01, 95% CI -1.68 to -0.34; P < 0.0001), but no difference specifically in the adult subgroup (MD -0.75, 95% CI -1.58 to 0.08; P = 0.08; 1 study; 36 participants; moderate-certainty evidence). Participants in the intervention arm reported higher satisfaction than with placebo (MD -0.92, 95% CI -1.79 to -0.05; P = 0.04; 1 study; 36 participants; low-certainty evidence), although again with no difference among adults (MD -0.25, 95% CI -1.52 to 1.02; P = 0.70; 1 study; 18 participants; low-certainty evidence). Groups did not differ in change in quality of life at six months (MD 0.30, 95% CI -1.01 to 1.61; P = 0.65; 1 study; 62 participants; low-certainty evidence). Treatment led to a higher risk of any AE compared to placebo (RR 1.72, 95% CI 1.10, 2.67; P = 0.02; 3 studies; 277 participants; moderate-certainty evidence); but no difference between groups in severe AEs (RR 0.78, 95% CI 0.19 to 3.15; P = 0.73; 1 study; 179 participants; moderate-certainty evidence). Authors' Conclusions: Oral everolimus reduces the size of SEGA and renal angiomyolipoma by 50%, reduces seizure frequency by 25% and 50% and implements beneficial effects on skin lesions with no difference in the total number of AEs compared to placebo; however, more participants in the treatment group required a dose reduction, interruption or withdrawal and marginally more experienced serious AEs compared to placebo. Topical rapamycin increases the response to skin lesions and facial angiofibroma, an improvement score, satisfaction and the risk of any AE, but not severe adverse events. With caution regarding the risk of severe AEs, this review supports oral everolimus for renal angiomyolipoma, SEGA, seizure, and skin lesions, and topical rapamycin for facial angiofibroma. (Copyright © 2023 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.) |
Databáze: | MEDLINE |
Externí odkaz: |