TAMM: Tensor algebra for many-body methods.
Autor: | Mutlu E; Advanced Computing, Mathematics, and Data Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA., Panyala A; Advanced Computing, Mathematics, and Data Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA., Gawande N; Intel Corporation, Richland, Washington 99352, USA., Bagusetty A; Argonne Leadership Computing Facility, Argonne National Laboratory, Argonne, Illinois 60439, USA., Glabe J; Advanced Computing, Mathematics, and Data Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA., Kim J; School of Computer Science and Engineering, Chung-Ang University, Seoul 06974, South Korea., Kowalski K; Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA., Bauman NP; Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA., Peng B; Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA., Pathak H; Advanced Computing, Mathematics, and Data Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA., Brabec J; J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, 182 23 Prague 8, Czech Republic., Krishnamoorthy S; Google Inc., Mountain View, California 94043, USA. |
---|---|
Jazyk: | angličtina |
Zdroj: | The Journal of chemical physics [J Chem Phys] 2023 Jul 14; Vol. 159 (2). |
DOI: | 10.1063/5.0142433 |
Abstrakt: | Tensor algebra operations such as contractions in computational chemistry consume a significant fraction of the computing time on large-scale computing platforms. The widespread use of tensor contractions between large multi-dimensional tensors in describing electronic structure theory has motivated the development of multiple tensor algebra frameworks targeting heterogeneous computing platforms. In this paper, we present Tensor Algebra for Many-body Methods (TAMM), a framework for productive and performance-portable development of scalable computational chemistry methods. TAMM decouples the specification of the computation from the execution of these operations on available high-performance computing systems. With this design choice, the scientific application developers (domain scientists) can focus on the algorithmic requirements using the tensor algebra interface provided by TAMM, whereas high-performance computing developers can direct their attention to various optimizations on the underlying constructs, such as efficient data distribution, optimized scheduling algorithms, and efficient use of intra-node resources (e.g., graphics processing units). The modular structure of TAMM allows it to support different hardware architectures and incorporate new algorithmic advances. We describe the TAMM framework and our approach to the sustainable development of scalable ground- and excited-state electronic structure methods. We present case studies highlighting the ease of use, including the performance and productivity gains compared to other frameworks. (© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).) |
Databáze: | MEDLINE |
Externí odkaz: |