[Coding of laboratory parameters using the LOINC system at the Clinical Center of the University of Debrecen].

Autor: Rácz S; 1 Debreceni Egyetem, Általános Orvostudományi Kar, Orvosi Képalkotó Intézet, Radiológiai Tanszék Debrecen Magyarország., Emri M; 2 Debreceni Egyetem, Általános Orvostudományi Kar, Orvosi Képalkotó Intézet, Nukleáris Medicina Tanszék Debrecen Magyarország., Opposits G; 2 Debreceni Egyetem, Általános Orvostudományi Kar, Orvosi Képalkotó Intézet, Nukleáris Medicina Tanszék Debrecen Magyarország., Berényi E; 3 Debreceni Egyetem, Klinikai Központ, Egészségügyi Szolgáltató Egységek, Diagnosztikai Egységek, Orvosi Képalkotó Klinika, Radiológia Debrecen Magyarország., Benczik L; 4 Debreceni Egyetem, Egészségügyi Finanszírozási és Kontrolling Igazgatóság Debrecen Magyarország., Ludman IA; 4 Debreceni Egyetem, Egészségügyi Finanszírozási és Kontrolling Igazgatóság Debrecen Magyarország., Kappelmayer J; 5 Debreceni Egyetem, Általános Orvostudományi Kar, Laboratóriumi Medicina Intézet Debrecen, Nagyerdei krt. 98., 4032 Magyarország., Bhattoa HP; 5 Debreceni Egyetem, Általános Orvostudományi Kar, Laboratóriumi Medicina Intézet Debrecen, Nagyerdei krt. 98., 4032 Magyarország.
Jazyk: maďarština
Zdroj: Orvosi hetilap [Orv Hetil] 2023 Jul 09; Vol. 164 (27), pp. 1043-1051. Date of Electronic Publication: 2023 Jul 09 (Print Publication: 2023).
DOI: 10.1556/650.2023.32814
Abstrakt: Introduction: The research utility of the bulk of the medical data generated at the Clinical Center of the University of Debrecen, which is constituted mainly by the clinical diagnostic laboratory results and medical images, is quite constrained in its present unstandardized form. The primary aim of the Big Data Research and Development project at the University of Debrecen is to facilitate data transformation and standardization to propagate its research utility for the potential end-users. Data generated in the in vitro diagnostic laboratory setting are an ideal candidate for the aforementioned goals. Data generated in Hungarian language in this particular setting are typically acronyms that do not particularly confirm to any standard norms and the transformation of these data using the globally acknowledged Logical Observation Identifiers Names and Codes (LOINC) was the primary goal of this research project. Globally the LOINC is used by healthcare providers, government agencies, insurance companies, software and device manufacturers, researchers and reference laboratories for identifying medical laboratory observations and promote unhindered fluency between various systems.
Objective: The aim of the project was to assure compliance of the various routine diagnostic laboratory parameters (n = 448) generated at the Department of Laboratory Medicine of the University of Debrecen to the LOINC system paying particular attention to and accommodating data sensitive to timeline and methodology.
Methods: Keywords allocated to individual parameters determined by the laboratory were provided by the IT service provider of the facility. The individual codes for the various parameters were manually identified using the search engine of the LOINC database available at http://www.loinc.org, only upon attainment of proficiency in use of the database and ample familiarity with the scientific literature on the topic.
Results: All routine diagnostic laboratory parameters were LOINC coded with no exception. The list of LOINCs' was made available on the https://labmed.unideb.hu/hu/loinc-tablazatok web link of the University of Debrecen.
Conclusion: The transformation of diagnostic laboratory parameters to globally recognized LOINCs' improves and further facilitates the international integration of data generated at the University of Debrecen, furthermore propels communications between laboratories and parties of interest beyond international boundaries and borders. Orv Hetil. 2023; 164(27): 1043-1051.
Databáze: MEDLINE