Quantum simulation of thermodynamics in an integrated quantum photonic processor.

Autor: Somhorst FHB; MESA+ Institute for Nanotechnology, University of Twente, P. O. box 217, 7500 AE, Enschede, The Netherlands., van der Meer R; MESA+ Institute for Nanotechnology, University of Twente, P. O. box 217, 7500 AE, Enschede, The Netherlands., Correa Anguita M; MESA+ Institute for Nanotechnology, University of Twente, P. O. box 217, 7500 AE, Enschede, The Netherlands., Schadow R; Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, 14195, Berlin, Germany., Snijders HJ; QuiX Quantum B.V., Hengelosestraat 500, 7521 AN, Enschede, The Netherlands., de Goede M; QuiX Quantum B.V., Hengelosestraat 500, 7521 AN, Enschede, The Netherlands., Kassenberg B; QuiX Quantum B.V., Hengelosestraat 500, 7521 AN, Enschede, The Netherlands., Venderbosch P; QuiX Quantum B.V., Hengelosestraat 500, 7521 AN, Enschede, The Netherlands., Taballione C; QuiX Quantum B.V., Hengelosestraat 500, 7521 AN, Enschede, The Netherlands., Epping JP; QuiX Quantum B.V., Hengelosestraat 500, 7521 AN, Enschede, The Netherlands., van den Vlekkert HH; QuiX Quantum B.V., Hengelosestraat 500, 7521 AN, Enschede, The Netherlands., Timmerhuis J; MESA+ Institute for Nanotechnology, University of Twente, P. O. box 217, 7500 AE, Enschede, The Netherlands., Bulmer JFF; Quantum Engineering Technology Labs, University of Bristol, Bristol, UK., Lugani J; Center for Sensors, Instrumentation and Cyber Physical System Engineering, IIT Delhi, New Delhi, 110 016, India., Walmsley IA; Department of Physics, Imperial College London, Prince Consort Rd., London, SW7 2AZ, UK.; Clarendon Laboratory, University of Oxford, Parks Road, Oxford, OX1 3PU, UK., Pinkse PWH; MESA+ Institute for Nanotechnology, University of Twente, P. O. box 217, 7500 AE, Enschede, The Netherlands., Eisert J; Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, 14195, Berlin, Germany. jense@zedat.fu-berlin.de.; Helmholtz-Zentrum Berlin für Materialien und Energie, 14109, Berlin, Germany. jense@zedat.fu-berlin.de.; Fraunhofer Heinrich Hertz Institute, 10587, Berlin, Germany. jense@zedat.fu-berlin.de., Walk N; Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, 14195, Berlin, Germany. nathan.walk@gmail.com., Renema JJ; MESA+ Institute for Nanotechnology, University of Twente, P. O. box 217, 7500 AE, Enschede, The Netherlands. j.j.renema@utwente.nl.; QuiX Quantum B.V., Hengelosestraat 500, 7521 AN, Enschede, The Netherlands. j.j.renema@utwente.nl.
Jazyk: angličtina
Zdroj: Nature communications [Nat Commun] 2023 Jul 01; Vol. 14 (1), pp. 3895. Date of Electronic Publication: 2023 Jul 01.
DOI: 10.1038/s41467-023-38413-9
Abstrakt: One of the core questions of quantum physics is how to reconcile the unitary evolution of quantum states, which is information-preserving and time-reversible, with evolution following the second law of thermodynamics, which, in general, is neither. The resolution to this paradox is to recognize that global unitary evolution of a multi-partite quantum state causes the state of local subsystems to evolve towards maximum-entropy states. In this work, we experimentally demonstrate this effect in linear quantum optics by simultaneously showing the convergence of local quantum states to a generalized Gibbs ensemble constituting a maximum-entropy state under precisely controlled conditions, while introducing an efficient certification method to demonstrate that the state retains global purity. Our quantum states are manipulated by a programmable integrated quantum photonic processor, which simulates arbitrary non-interacting Hamiltonians, demonstrating the universality of this phenomenon. Our results show the potential of photonic devices for quantum simulations involving non-Gaussian states.
(© 2023. The Author(s).)
Databáze: MEDLINE