Salicylic acid-doped iron nano-biostimulants potentiate defense responses and suppress Fusarium wilt in watermelon.

Autor: Noman M; State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China., Ahmed T; State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Xianghu Laboratory, Hangzhou 311231, China., Shahid M; Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan., Nazir MM; School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China., Azizullah; State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China., Li D; State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China., Song F; State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China. Electronic address: fmsong@zju.edu.cn.
Jazyk: angličtina
Zdroj: Journal of advanced research [J Adv Res] 2024 May; Vol. 59, pp. 19-33. Date of Electronic Publication: 2023 Jun 28.
DOI: 10.1016/j.jare.2023.06.011
Abstrakt: Introduction: Chemo- and bio-genic metallic nanoparticles (NPs), as a novel nano-enabled strategy, have demonstrated a great potential in crop health management.
Objective: The current study aimed to explore the efficacy of advanced nanocomposites (NCs), integrating biogenic (bio) metallic NPs and plant immunity-regulating hormones, in crop disease control.
Methods: Iron (Fe) NPs were biosynthesized using cell-free supernatant of a Fe-resistant strains, Bacillus marisflavi ZJ-4. Further, salicylic acid-coated bio-FeNPs (SI) NCs were prepared via co-precipitation method under alkaline conditions. Both bio-FeNPs and SINCs were characterized using basic analytical techniques, including Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction analysis, and scanning/transmission electron microscopy.
Results: Bio-FeNPs and SINCs had variable shapes with average sizes of 72.35 nm and 65.87 nm, respectively. Under greenhouse conditions, bio-FeNPs and SINCs improved the agronomic traits of the watermelon plants, and SINCs outperformed bio-FeNPs, providing the maximum growth promotion of 32.5%. Soil-drenching with bio-FeNPs and SINCs suppressed Fusarium oxysporum f. sp. niveum-caused Fusarium wilt in watermelon, and SINCs provided better protection than bio-FeNPs, through inhibiting the fungal invasive growth within host plants. SINCs improved the antioxidative capacity and primed a systemic acquired resistance (SAR) response via activating the salicylic acid signaling pathway genes. These findings indicate that SINCs can reduce the severity of Fusarium wilt in watermelon by modulating antioxidative capacity and potentiating SAR to restrict in planta fungal invasive growth.
Conclusion: This study provides new insights into the potential of bio-FeNPs and SINCs as biostimulants and bioprotectants for growth promotion and Fusarium wilt suppression, ensuring sustainable watermelon production.
Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2024. Production and hosting by Elsevier B.V.)
Databáze: MEDLINE