Biological light-weight materials: The endoskeletons of cephalopod mollusks.

Autor: Griesshaber E; Department fur Geo- und Umweltwissenschaften, Ludwig-Maximilians-Universität München, Munich, Germany., Checa AG; Departamento de Estratigrafía y Paleontología, Universidad de Granada, 18071 Granada, Spain; Instituto Andaluz de Ciencias de la Tierra, CSIC-Universidad de Granada, 18100 Armilla, Spain., Salas C; Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, 29071-Málaga, Spain., Hoffmann R; Institute of Geology, Mineralogy, and Geophysics, Department of Earth Sciences, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801 Bochum, Germany., Yin X; Department fur Geo- und Umweltwissenschaften, Ludwig-Maximilians-Universität München, Munich, Germany., Neuser R; Institute of Geology, Mineralogy, and Geophysics, Department of Earth Sciences, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801 Bochum, Germany., Rupp U; Zentrale Einrichtung Elektronenmikroskopie, Universität Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany., Schmahl WW; Department fur Geo- und Umweltwissenschaften, Ludwig-Maximilians-Universität München, Munich, Germany.
Jazyk: angličtina
Zdroj: Journal of structural biology [J Struct Biol] 2023 Sep; Vol. 215 (3), pp. 107988. Date of Electronic Publication: 2023 Jun 24.
DOI: 10.1016/j.jsb.2023.107988
Abstrakt: Structural biological hard tissues fulfill diverse tasks: protection, defence, locomotion, structural support, reinforcement, buoyancy. The cephalopod mollusk Spirula spirula has a planspiral, endogastrically coiled, chambered, endoskeleton consisting of the main elements: shell-wall, septum, adapical-ridge, siphuncular-tube. The cephalopod mollusk Sepia officinalis has an oval, flattened, layered-cellular endoskeleton, formed of the main elements: dorsal-shield, wall/pillar, septum, siphuncular-zone. Both endoskeletons are light-weight buoyancy devices that enable transit through marine environments: vertical (S. spirula), horizontal (S. officinalis). Each skeletal element of the phragmocones has a specific morphology, component structure and organization. The conjunction of the different structural and compositional characteristics renders the evolved nature of the endoskeletons and facilitates for Spirula frequent migration from deep to shallow water and for Sepia coverage over large horizontal distances, without damage of the buoyancy device. Based on Electron-Backscatter-Diffraction (EBSD) measurements and TEM, FE-SEM, laser-confocal-microscopy imaging we highlight for each skeletal element of the endoskeleton its specific mineral/biopolymer hybrid nature and constituent arrangement. We demonstrate that a variety of crystal morphologies and biopolymer assemblies are needed for enabling the endoskeleton to act as a buoyancy device. We show that all organic components of the endoskeletons have the structure of cholesteric-liquid-crystals and indicate which feature of the skeletal element yields the necessary mechanical property to enable the endoskeleton to fulfill its function. We juxtapose structural, microstructural, texture characteristics and benefits of coiled and planar endoskeletons and discuss how morphometry tunes structural biomaterial function. Both mollusks use their endoskeleton for buoyancy regulation, live and move, however, in distinct marine environments.
Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2023. Published by Elsevier Inc.)
Databáze: MEDLINE