Bioremediation of Catechol and Concurrent Accumulation of Biocompounds by the Microalga Crypthecodinium cohnii .

Autor: Zou LG; Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou 510632, China., Yao YT; Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou 510632, China., Wen FF; Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou 510632, China., Zhang X; Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou 510632, China., Liu BT; Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou 510632, China., Li DW; Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou 510632, China., Yang YF; Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou 510632, China., Yang WD; Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou 510632, China., Balamurugan S; Department of Biotechnology, Bharathidasan University, Tiruchirappalli 620024, India., Li HY; Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou 510632, China.; School of Basic Medical Sciences, Youjiang Medical University of Nationalities, Baise 533000, China.
Jazyk: angličtina
Zdroj: Journal of agricultural and food chemistry [J Agric Food Chem] 2023 Jul 05; Vol. 71 (26), pp. 10065-10074. Date of Electronic Publication: 2023 Jun 21.
DOI: 10.1021/acs.jafc.3c01814
Abstrakt: Burgeoning commercial applications of catechol have led to its excessive accumulation in the environment, thereby posing a severe ecological threat. Bioremediation has emerged as a promising solution. The potential of the microalga Crypthecodinium cohnii to degrade catechol and use the byproduct as a carbon source was investigated in this study. Catechol significantly increased C. cohnii growth and was rapidly catabolized within 60 h of cultivation. Transcriptomic analysis highlighted the key genes involved in catechol degradation. Real-time polymerase chain reaction (RT-PCR) analysis showed that transcription of key genes CatA, CatB , and SaID involved in the ortho-cleavage pathway was remarkably increased by 2.9-, 4.2-, and 2.4- fold, respectively. Key primary metabolite content was also markedly altered, with a specific increment in polyunsaturated fatty acids. Electron microscopy and antioxidant analysis showed that C. cohnii could tolerate catechol treatment without morphological aberrations or oxidative stress. The findings provide a strategy for C. cohnii in the bioremediation of catechol and concurrent polyunsaturated fatty acids (PUFA) accumulation.
Databáze: MEDLINE