Autor: |
Armién AG; University of California, Davis, Davis, CA., Polon R; University of California, Davis, Davis, CA., Rejmanek D; University of California, Davis, Davis, CA., Moeller RB; University of California, Davis, Davis, CA., Crossley BM; University of California, Davis, Davis, CA. |
Abstrakt: |
Mealworms are one of the most economically important insects in large-scale production for human and animal nutrition. Densoviruses are highly pathogenic for invertebrates and exhibit an extraordinary level of diversity which rivals that of their hosts. Molecular, clinical, histological, and electron microscopic characterization of novel densovirus infections is of utmost economic and ecological importance. Here, we describe an outbreak of densovirus with high mortality in a commercial mealworm ( Tenebrio molitor ) farm. Clinical signs included inability to prehend food, asymmetric locomotion evolving to nonambulation, dehydration, dark discoloration, and death. Upon gross examination, infected mealworms displayed underdevelopment, dark discoloration, larvae body curvature, and organ/tissue softness. Histologically, there was massive epithelial cell death, and cytomegaly and karyomegaly with intranuclear inclusion (InI) bodies in the epidermis, pharynx, esophagus, rectum, tracheae, and tracheoles. Ultrastructurally, these InIs represented a densovirus replication and assembly complex composed of virus particles ranging from 23.79 to 26.99 nm in diameter, as detected on transmission electron microscopy. Whole-genome sequencing identified a 5579-nucleotide-long densovirus containing 5 open reading frames. A phylogenetic analysis of the mealworm densovirus showed it to be closely related to several bird- and bat-associated densoviruses, sharing 97% to 98% identity. Meanwhile, the nucleotide similarity to a mosquito, cockroach, and cricket densovirus was 55%, 52%, and 41%, respectively. As this is the first described whole-genome characterization of a mealworm densovirus, we propose the name Tenebrio molitor densovirus ( Tm DNV). In contrast to polytropic densoviruses, this Tm DNV is epitheliotropic, primarily affecting cuticle-producing cells. |