Numerical simulation of flow-diverting stent: comparison between branches in bifurcation brain aneurysm.

Autor: Boite Y; Programa de Pós-Graduação em Engenharia de Processos Químicos e Bioquímicos da Escola de Química, UFRJ, LabCFD, Rua Moniz de Aragão, Bloco K, Rio de Janeiro, RJ, 21941972, Brazil. yasmincarvalho13@hotmail.com., Suaiden Klein T; Programa de Pós-Graduação em Engenharia de Processos Químicos e Bioquímicos da Escola de Química, UFRJ, LabCFD, Rua Moniz de Aragão, Bloco K, Rio de Janeiro, RJ, 21941972, Brazil., de Andrade Medronho R; Programa de Pós-Graduação em Engenharia de Processos Químicos e Bioquímicos da Escola de Química, UFRJ, LabCFD, Rua Moniz de Aragão, Bloco K, Rio de Janeiro, RJ, 21941972, Brazil., Wajnberg E; Radiologia Intervencionista, Hospital Américas, Avenida Jorge Curi, 550, Rio de Janeiro, RJ, 22793334, Brazil.
Jazyk: angličtina
Zdroj: Biomechanics and modeling in mechanobiology [Biomech Model Mechanobiol] 2023 Dec; Vol. 22 (6), pp. 1801-1814. Date of Electronic Publication: 2023 Jun 19.
DOI: 10.1007/s10237-023-01733-2
Abstrakt: The usage of flow-diverting stents in the treatment of intracranial aneurysms is widespread due to their high success and low complication rates. However, their use is still not officially recommended for bifurcation aneurysms, as there is a risk of generating ischemic complications due to the reduced blood flow to the jailed branch. Many works utilize computational fluid dynamics (CFD) to study how hemodynamic variables respond to flow diverter placement, but few seem to use it to verify flow variation between branches of bifurcation aneurysms and to aid in the choice of the best ramification for device placement. This investigation was performed in the present work, by comparing wall shear stress (WSS) and flowrates for a patient-specific scenario of a middle cerebral artery (MCA) aneurysm, considering device placement on each branch. A secondary objective was to follow a methodology that provides fast results, envisioning application to daily medical practice. The device was simplified as a homogeneous porous medium, and extreme porosity values were simulated for comparison. Results suggest that stent placement on either branch is both safe and effective, significantly reducing WSS and flow into the aneurysm while maintaining flow to the different ramifications within acceptable thresholds.
(© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
Databáze: MEDLINE