Cells immersed in collagen matrices show a decrease in plasma membrane fluidity as the matrix stiffness increases.

Autor: Aguilar J; Laboratorio de Interacciones Macromoleculares (LIMM), Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile., Malacrida L; Departamento de Fisiopatología, Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay; Advanced Bioimaging Unit, Institut Pasteur Montevideo, Universidad de la República, Montevideo, Uruguay., Gunther G; Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile., Torrado B; Biomedical Engineering Department, University of California at Irvine, California, USA., Torres V; Departamento de Bioquímica, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile., Urbano BF; Laboratorio de Interacciones Macromoleculares (LIMM), Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile., Sánchez SA; Laboratorio de Interacciones Macromoleculares (LIMM), Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile. Electronic address: susanchez@udec.cl.
Jazyk: angličtina
Zdroj: Biochimica et biophysica acta. Biomembranes [Biochim Biophys Acta Biomembr] 2023 Oct; Vol. 1865 (7), pp. 184176. Date of Electronic Publication: 2023 Jun 14.
DOI: 10.1016/j.bbamem.2023.184176
Abstrakt: Cells are constantly adapting to maintain their identity in response to the surrounding media's temporal and spatial heterogeneity. The plasma membrane, which participates in the transduction of external signals, plays a crucial role in this adaptation. Studies suggest that nano and micrometer areas with different fluidities at the plasma membrane change their distribution in response to external mechanical signals. However, investigations linking fluidity domains with mechanical stimuli, specifically matrix stiffness, are still in progress. This report tests the hypothesis that the stiffness of the extracellular matrix can modify the equilibrium of areas with different order in the plasma membrane, resulting in changes in overall membrane fluidity distribution. We studied the effect of matrix stiffness on the distribution of membrane lipid domains in NIH-3 T3 cells immersed in matrices of varying concentrations of collagen type I, for 24 or 72 h. The stiffness and viscoelastic properties of the collagen matrices were characterized by rheometry, fiber sizes were measured by Scanning Electron Microscopy (SEM) and the volume occupied by the fibers by second harmonic generation imaging (SHG). Membrane fluidity was measured using the fluorescent dye LAURDAN and spectral phasor analysis. The results demonstrate that an increase in collagen stiffness alters the distribution of membrane fluidity, leading to an increasing amount of the LAURDAN fraction with a high degree of packing. These findings suggest that changes in the equilibrium of fluidity domains could represent a versatile and refined component of the signal transduction mechanism for cells to respond to the highly heterogeneous matrix structural composition. Overall, this study sheds light on the importance of the plasma membrane's role in adapting to the extracellular matrix's mechanical cues.
Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2023 Elsevier B.V. All rights reserved.)
Databáze: MEDLINE