Autor: |
Alnami B; Department of Chemistry, The University of Manchester, Manchester M13 9PL, U.K., Kragskow JGC; Department of Chemistry, The University of Manchester, Manchester M13 9PL, U.K., Staab JK; Department of Chemistry, The University of Manchester, Manchester M13 9PL, U.K., Skelton JM; Department of Chemistry, The University of Manchester, Manchester M13 9PL, U.K., Chilton NF; Department of Chemistry, The University of Manchester, Manchester M13 9PL, U.K. |
Jazyk: |
angličtina |
Zdroj: |
Journal of the American Chemical Society [J Am Chem Soc] 2023 Jun 28; Vol. 145 (25), pp. 13632-13639. Date of Electronic Publication: 2023 Jun 16. |
DOI: |
10.1021/jacs.3c01342 |
Abstrakt: |
Anisotropy in the magnetic susceptibility strongly influences the paramagnetic shifts seen in nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) experiments. A previous study on a series of C 3 -symmetric prototype MRI contrast agents showed that their magnetic anisotropy was highly sensitive to changes in molecular geometry and concluded that changes in the average angle between the lanthanide-oxygen (Ln-O) bonds and the molecular C 3 axis due to solvent interactions had a significant impact on the magnetic anisotropy and, consequently, the paramagnetic shift. However, this study, like many others, was predicated on an idealized C 3 -symmetric structural model, which may not be representative of the dynamic structure in solution at the single-molecule level. Here, we address this by using ab initio molecular dynamics simulations to simulate how the molecular geometry, in particular the angles between the Ln-O bonds and the pseudo-C 3 axis, evolves over time in the solution, mimicking typical experimental conditions. We observe large-amplitude oscillations in the O-Ln-C̃ 3 angles, and complete active space self-consistent field spin-orbit calculations show that this leads to similarly large oscillations in the pseudocontact (dipolar) paramagnetic NMR shifts. The time-averaged shifts show good agreement with experimental measurements, while the large fluctuations suggest that an idealized structure provides an incomplete description of the solution dynamics. Our observations have significant implications for modeling the electronic and nuclear relaxation times in this and other systems where the magnetic susceptibility is exquisitely sensitive to the molecular structure. |
Databáze: |
MEDLINE |
Externí odkaz: |
|