The ecological causes of functional distinctiveness in communities.

Autor: Munoz F; Laboratoire Interdisciplinaire de Physique, Université Grenoble-Alpes, Grenoble, France., Klausmeier CA; W. K. Kellogg Biological Station, Departments of Plant Biology & Integrative Biology, Program in Ecology & Evolutionary Biology, Michigan State University, Hickory Corners, Michigan, USA.; Department of Global Ecology, Carnegie Institution for Science, Stanford, California, USA., Gaüzère P; Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA - Laboratoire d'Ecologie Alpine, Grenoble, France., Kandlikar G; Division of Biological Sciences and Division of Plant Science & Technology, University of Missouri, Columbia, Missouri, USA.; Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA., Litchman E; W. K. Kellogg Biological Station, Departments of Plant Biology & Integrative Biology, Program in Ecology & Evolutionary Biology, Michigan State University, Hickory Corners, Michigan, USA.; Department of Global Ecology, Carnegie Institution for Science, Stanford, California, USA., Mouquet N; MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France.; FRB - CESAB, Montpellier, France., Ostling A; Department of Integrative Biology, The University of Texas at Austin, Austin, USA., Thuiller W; Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA - Laboratoire d'Ecologie Alpine, Grenoble, France., Algar AC; Department of Biology, Lakehead University, Thunder Bay, Ontario, Canada., Auber A; IFREMER, Unité Halieutique Manche Mer du Nord, Laboratoire Ressources Halieutiques, Boulogne-sur-Mer, France., Cadotte MW; Department of Biological Sciences, University of Toronto-Scarborough, Toronto, Ontario, Canada., Delalandre L; CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France., Denelle P; CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France.; Biodiversity, Macroecology & Biogeography, University of Göttingen, Göttingen, Germany., Enquist BJ; Ecology and Evolutionary Biology, University of Arizona, Tucson, USA., Fortunel C; AMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France., Grenié M; CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France.; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig Puschstraße 4, Leipzig, Germany.; Leipzig University Ritterstraße 26, Leipzig, Germany., Loiseau N; MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France., Mahaut L; FRB - CESAB, Montpellier, France.; CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France., Maire A; EDF R&D, LNHE - Laboratoire National d'Hydraulique et Environnement, Chatou, France., Mouillot D; MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France., Pimiento C; Department of Biosciences, Swansea University, Swansea, UK.; Smithsonian Tropical Research Institute, Panama, Panama.; Paläontologisches Institut und Museum, Universität Zürich, Zürich, Switzerland., Violle C; CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France., Kraft NJB; Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA.
Jazyk: angličtina
Zdroj: Ecology letters [Ecol Lett] 2023 Aug; Vol. 26 (8), pp. 1452-1465. Date of Electronic Publication: 2023 Jun 15.
DOI: 10.1111/ele.14265
Abstrakt: Recent work has shown that evaluating functional trait distinctiveness, the average trait distance of a species to other species in a community offers promising insights into biodiversity dynamics and ecosystem functioning. However, the ecological mechanisms underlying the emergence and persistence of functionally distinct species are poorly understood. Here, we address the issue by considering a heterogeneous fitness landscape whereby functional dimensions encompass peaks representing trait combinations yielding positive population growth rates in a community. We identify four ecological cases contributing to the emergence and persistence of functionally distinct species. First, environmental heterogeneity or alternative phenotypic designs can drive positive population growth of functionally distinct species. Second, sink populations with negative population growth can deviate from local fitness peaks and be functionally distinct. Third, species found at the margin of the fitness landscape can persist but be functionally distinct. Fourth, biotic interactions (positive or negative) can dynamically alter the fitness landscape. We offer examples of these four cases and guidelines to distinguish between them. In addition to these deterministic processes, we explore how stochastic dispersal limitation can yield functional distinctiveness. Our framework offers a novel perspective on the relationship between fitness landscape heterogeneity and the functional composition of ecological assemblages.
(© 2023 The Authors. Ecology Letters published by John Wiley & Sons Ltd.)
Databáze: MEDLINE