Autor: |
Salloum PM; Department of Zoology, University of Otago, Dunedin 9016, New Zealand., Jorge F; Otago Micro and Nano Imaging, Electron Microscopy Unit, University of Otago, Dunedin 9016, New Zealand., Dheilly NM; School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794, USA.; ANSES, Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail - Laboratoire de Ploufragan-Plouzané, Unité Génétique Virale de Biosécurité, 22440, Ploufragan, France., Poulin R; Department of Zoology, University of Otago, Dunedin 9016, New Zealand. |
Abstrakt: |
For parasites with complex multi-host life cycles, the facultative truncation of the cycle represents an adaptation to challenging conditions for transmission. However, why certain individuals are capable of abbreviating their life cycle while other conspecifics are not remains poorly understood. Here, we test whether conspecific trematodes that either follow the normal three-host life cycle or skip their final host by reproducing precociously (via progenesis) in an intermediate host differ in the composition of their microbiomes. Characterization of bacterial communities based on sequencing of the V4 hypervariable region of the 16S SSU rRNA gene revealed that the same bacterial taxa occur in both normal and progenetic individuals, independent of host identity and temporal variation. However, all bacterial phyla recorded in our study, and two-thirds of bacterial families, differed in abundance between the two morphs, with some achieving higher abundance in the normal morph and others in the progenetic morph. Although the evidence is purely correlative, our results reveal a weak association between microbiome differences and intraspecific plasticity in life cycle pathways. Advances in functional genomics and experimental microbiome manipulation will allow future tests of the significance of these findings. |