Ultrashort pulse laser patterning of zirconia (3Y-TZP) for enhanced adhesion to resin-matrix cements used in dentistry: An integrative review.

Autor: Sahoo N; Centre Microelectromechanical Systems (CMEMS-UMinho), University of Minho, Campus Azurém, Guimarães, 4800-058, Portugal; LABBELS Associate Laboratory, University of Minho, Guimarães, 4710-057, Braga, Portugal., Carvalho O; Centre Microelectromechanical Systems (CMEMS-UMinho), University of Minho, Campus Azurém, Guimarães, 4800-058, Portugal; LABBELS Associate Laboratory, University of Minho, Guimarães, 4710-057, Braga, Portugal., Özcan M; Division of Dental Materials, Center for Dental Medicine, Clinic of Reconstructive Dentistry, University of Zurich, Zurich, 8032, Switzerland., Silva F; Centre Microelectromechanical Systems (CMEMS-UMinho), University of Minho, Campus Azurém, Guimarães, 4800-058, Portugal; LABBELS Associate Laboratory, University of Minho, Guimarães, 4710-057, Braga, Portugal., Souza JCM; Centre Microelectromechanical Systems (CMEMS-UMinho), University of Minho, Campus Azurém, Guimarães, 4800-058, Portugal; LABBELS Associate Laboratory, University of Minho, Guimarães, 4710-057, Braga, Portugal; Department of Dental Sciences, University Institute of Health Sciences (IUCS), CESPU, Gandra, PRD, 4585-116, Portugal., Lasagni AF; Institute for Manufacturing Technology, Technische Universität Dresden, 01062, Dresden, Germany., Henriques B; Centre Microelectromechanical Systems (CMEMS-UMinho), University of Minho, Campus Azurém, Guimarães, 4800-058, Portugal; LABBELS Associate Laboratory, University of Minho, Guimarães, 4710-057, Braga, Portugal; Ceramic and Composite Materials Research Group (CERMAT), Federal University of Santa Catarina (UFSC), Campus Trindade, Florianópolis, SC, 88040-900, Brazil. Electronic address: bruno.henriques@ufsc.br.
Jazyk: angličtina
Zdroj: Journal of the mechanical behavior of biomedical materials [J Mech Behav Biomed Mater] 2023 Jul; Vol. 143, pp. 105943. Date of Electronic Publication: 2023 May 29.
DOI: 10.1016/j.jmbbm.2023.105943
Abstrakt: Surface modification of yttria-stabilized tetragonal zirconia polycrystals (Y-TZP) using lasers for adhesion enhancement with resin-matrix cement has been increasingly explored. However, Y-TZP is chemically inert and non-reactive, demanding surface modification using alternative approaches to enhance its bond strength to resin-matrix cements. The main aim of this study was to conduct an integrative review on the influence of ultrashort pulse laser patterning of zirconia (3Y-TZP) for enhanced bonding to resin-matrix cements. An electronic search was performed on web of science, SCOPUS, Pubmed/Medline, Google Scholar and EMBASE using a combination of the following search items: zirconia, 3Y-TZP, surface modification, laser surface treatment, AND laser, ultrashortpulse laser, bonding, adhesion, and resin cement. Articles published in the English language, up to January 2022, were included regarding the influence of surface patterning on bond strength of Y-TZP to resin-matrix cements. Out of the 12 studies selected for the present review 10 studies assessed femtosecond lasers while 2 studies assessed picosecond lasers. Ultrashort pulsed laser surface patterning successfully produced different surface morphological aspects without damaging the bulk properties of zirconia. Contrarily, defects such as micro-cracks occurs after surface modification using traditional methods such as grit-blasting or long-pulsed laser patterning. Ultrashort pulsed laser surface patterning increase bond strength of zirconia to resin-matrix cements and therefore such alternative physical method should be considered in dentistry. Also, surface defects were avoided using ultrashort pulsed laser surface patterning, which become the major advantage when compared with traditional physical methods or long pulse laser patterning.
Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2023 The Authors. Published by Elsevier Ltd.. All rights reserved.)
Databáze: MEDLINE