Autor: |
Alfahed A; Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia., Ebili HO; Department of Morbid Anatomy and Histopathology, Olabisi Onabanjo University, Ago-Iwoye P.M.B. 2002, Nigeria., Almoammar NE; Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia., Alasiri G; Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud University, Riyadh 13317, Saudi Arabia., AlKhamees OA; Department of Pharmacology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13317, Saudi Arabia., Aldali JA; Department of Pathology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13317, Saudi Arabia., Al Othaim A; Department of Medical Laboratories, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia., Hakami ZH; Medical Laboratory Technology Department, College of Applied Medical Sciences, Jazan University, Jazan 82817, Saudi Arabia., Abdulwahed AM; Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11362, Saudi Arabia., Waggiallah HA; Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia. |
Abstrakt: |
Whilst risk prediction for individual prostate cancer (PCa) cases is of a high priority, the current risk stratification indices for PCa management have severe limitations. This study aimed to identify gene copy number alterations (CNAs) with prognostic values and to determine if any combination of gene CNAs could have risk stratification potentials. Clinical and genomic data of 500 PCa cases from the Cancer Genome Atlas stable were retrieved from the Genomic Data Commons and cBioPortal databases. The CNA statuses of a total of 52 genetic markers, including 21 novel markers and 31 previously identified potential prognostic markers, were tested for prognostic significance. The CNA statuses of a total of 51/52 genetic markers were significantly associated with advanced disease at an odds ratio threshold of ≥1.5 or ≤0.667. Moreover, a Kaplan-Meier test identified 27/52 marker CNAs which correlated with disease progression. A Cox Regression analysis showed that the amplification of MIR602 and deletions of MIR602 , ZNF267 , MROH1, PARP8 , and HCN1 correlated with a progression-free survival independent of the disease stage and Gleason prognostic group grade. Furthermore, a binary logistic regression analysis identified twenty-two panels of markers with risk stratification potentials. The best model of 7/52 genetic CNAs, which included the SPOP alteration, SPP1 alteration, CCND1 amplification, PTEN deletion, CDKN1B deletion, PARP8 deletion, and NKX3.1 deletion, stratified the PCa cases into a localised and advanced disease with an accuracy of 70.0%, sensitivity of 85.4%, specificity of 44.9%, positive predictive value of 71.67%, and negative predictive value of 65.35%. This study validated prognostic gene level CNAs identified in previous studies, as well as identified new genetic markers with CNAs that could potentially impact risk stratification in PCa. |