Artificial intelligence, machine learning, and deep learning in liver transplantation.
Autor: | Bhat M; Ajmera Transplant Program, University Health Network, Toronto, ON, Canada; Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Division of Gastroenterology & Hepatology, Department of Medicine, University of Toronto, Toronto, ON, Canada. Electronic address: Mamatha.Bhat@uhn.ca., Rabindranath M; Ajmera Transplant Program, University Health Network, Toronto, ON, Canada; Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada., Chara BS; Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA., Simonetto DA; Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA. |
---|---|
Jazyk: | angličtina |
Zdroj: | Journal of hepatology [J Hepatol] 2023 Jun; Vol. 78 (6), pp. 1216-1233. |
DOI: | 10.1016/j.jhep.2023.01.006 |
Abstrakt: | Liver transplantation (LT) is a life-saving treatment for individuals with end-stage liver disease. The management of LT recipients is complex, predominantly because of the need to consider demographic, clinical, laboratory, pathology, imaging, and omics data in the development of an appropriate treatment plan. Current methods to collate clinical information are susceptible to some degree of subjectivity; thus, clinical decision-making in LT could benefit from the data-driven approach offered by artificial intelligence (AI). Machine learning and deep learning could be applied in both the pre- and post-LT settings. Some examples of AI applications pre-transplant include optimising transplant candidacy decision-making and donor-recipient matching to reduce waitlist mortality and improve post-transplant outcomes. In the post-LT setting, AI could help guide the management of LT recipients, particularly by predicting patient and graft survival, along with identifying risk factors for disease recurrence and other associated complications. Although AI shows promise in medicine, there are limitations to its clinical deployment which include dataset imbalances for model training, data privacy issues, and a lack of available research practices to benchmark model performance in the real world. Overall, AI tools have the potential to enhance personalised clinical decision-making, especially in the context of liver transplant medicine. (Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved.) |
Databáze: | MEDLINE |
Externí odkaz: |