Longitudinal effects of ketamine on cell proliferation and death in the CNS of zebrafish.
Autor: | Santos C; Escola Universitária Vasco da Gama (EUVG), Centro de Investigação Vasco da Gama (CIVG), EUVG, Coimbra, Portugal; Faculdade de Medicina da Universidade de Coimbra (FMUC), Coimbra, Portugal; Centro de Ciência Animal e Veterinária (CECAV), Universidade de Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal., Valentim AM; Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal., Félix L; Centro de Investigação e de Tecnologias Agroambientais e Biológicas (CITAB), UTAD, Vila Real, Portugal., Balça-Silva J; NOVA Medical School - Faculdade de Ciências Médicas, Universidade Nova de Lisboa (FCM-UNL), Lisboa, Portugal., Pinto ML; Centro de Ciência Animal e Veterinária (CECAV), Universidade de Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal. Electronic address: lpinto@utad.pt. |
---|---|
Jazyk: | angličtina |
Zdroj: | Neurotoxicology [Neurotoxicology] 2023 Jul; Vol. 97, pp. 78-88. Date of Electronic Publication: 2023 May 15. |
DOI: | 10.1016/j.neuro.2023.05.008 |
Abstrakt: | Zebrafish is known for its widespread neurogenesis and regenerative capacity, as well as several biological advantages, which turned it into a relevant animal model in several areas of research, namely in toxicological studies. Ketamine is a well-known anesthetic used both in human as well as veterinary medicine, due to its safety, short duration and unique mode of action. However, ketamine administration is associated with neurotoxic effects and neuronal death, which renders its use on pediatric medicine problematic. Thus, the evaluation of ketamine effects administration at early stages of neurogenesis is of pivotal importance. The 1-41-4 somites stage of zebrafish embryo development corresponds to the beginning of segmentation and formation of neural tube. In this species, as well as in other vertebrates, longitudinal studies are scarce, and the evaluation of ketamine long-term effects in adults is poorly understood. This study aimed to assess the effects of ketamine administration at the 1-4 somites stage, both in subanesthetic and anesthetic concentrations, in brain cellular proliferation, pluripotency and death mechanisms in place during early and adult neurogenesis. For that purpose, embryos at the 1-4 somites stage (10.5 h post fertilization - hpf) were distributed into study groups and exposed for 20 min to ketamine concentrations at 0.2/0.8 mg/mL. Animals were grown until defined check points, namely 50 hpf, 144 hpf and 7 months adults. The assessment of the expression and distribution patterns of proliferating cell nuclear antigen (PCNA), of sex-determining region Y-box 2 (Sox 2), apoptosis-inducing factor (AIF) and microtubule-associated protein 1 light chain 3 (LC3) was performed by Western-blot and immunohistochemistry. The results evidenced the main alterations in 144 hpf larvae, namely in autophagy and in cellular proliferation at the highest concentration of ketamine (0.8 mg/mL). Nonetheless, in adults no significant alterations were seen, pointing to a return to a homeostatic stage. This study allowed clarifying some of the aspects pertaining the longitudinal effects of ketamine administration regarding the CNS capacity to proliferate and activate the appropriate cell death and repair mechanisms leading to homeostasis in zebrafish. Moreover, the results indicate that ketamine administration at 1-4 somites stage in the subanesthetic and anesthetic concentrations despite some transitory detrimental effects at 144 hpf, is long-term safe for CNS, which are newly and promising results in this research field. Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. (Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved.) |
Databáze: | MEDLINE |
Externí odkaz: |