Entanglement entropy and hyperuniformity of Ginibre and Weyl-Heisenberg ensembles.
Autor: | Abreu LD; NuHAG, Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria. |
---|---|
Jazyk: | angličtina |
Zdroj: | Letters in mathematical physics [Lett Math Phys] 2023; Vol. 113 (3), pp. 54. Date of Electronic Publication: 2023 May 12. |
DOI: | 10.1007/s11005-023-01674-y |
Abstrakt: | We show that, for a class of planar determinantal point processes (DPP) X , the growth of the entanglement entropy S ( X ( Ω ) ) of X on a compact region Ω ⊂ R 2 d , is related to the variance V X ( Ω ) as follows: V X ( Ω ) ≲ S X ( Ω ) ≲ V X ( Ω ) . Therefore, such DPPs satisfy an area law S X g ( Ω ) ≲ ∂ Ω , where ∂ Ω is the boundary of Ω if they are of Class I hyperuniformity ( V X ( Ω ) ≲ ∂ Ω ), while the area law is violated if they are of Class II hyperuniformity (as L → ∞ , V X ( L Ω ) ∼ C Ω L d - 1 log L ). As a result, the entanglement entropy of Weyl-Heisenberg ensembles (a family of DPPs containing the Ginibre ensemble and Ginibre-type ensembles in higher Landau levels), satisfies an area law, as a consequence of its hyperuniformity. Competing Interests: Conflict of interestOn behalf of all authors, the corresponding author states that there is no conflict of interest. (© The Author(s) 2023.) |
Databáze: | MEDLINE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |