Cyanotoxins dissipation in soil: Evidence from microcosm assays.

Autor: Zhang Y; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China; College of Resources, Sichuan Agricultural University, 211 Huimin Rd., Chengdu 611130, China; Department of Chemistry, Université de Montréal, Campus MIL, 1375 Av. Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3, Canada; Department of Natural Resource Sciences, McGill University, Macdonald Campus, 21,111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, China. Electronic address: yanyan.zhang@sicau.edu.cn., Duy SV; Department of Chemistry, Université de Montréal, Campus MIL, 1375 Av. Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3, Canada., Whalen JK; Department of Natural Resource Sciences, McGill University, Macdonald Campus, 21,111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada., Munoz G; Department of Chemistry, Université de Montréal, Campus MIL, 1375 Av. Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3, Canada., Gao X; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China; College of Resources, Sichuan Agricultural University, 211 Huimin Rd., Chengdu 611130, China; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, China., Sauvé S; Department of Chemistry, Université de Montréal, Campus MIL, 1375 Av. Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3, Canada.
Jazyk: angličtina
Zdroj: Journal of hazardous materials [J Hazard Mater] 2023 Jul 15; Vol. 454, pp. 131534. Date of Electronic Publication: 2023 Apr 28.
DOI: 10.1016/j.jhazmat.2023.131534
Abstrakt: Cyanobacteria proliferate in warm, nutrient-rich environments, and release cyanotoxins into natural waters. If cyanotoxin-contaminated water is used to irrigate agricultural crops, this could expose humans and other biota to cyanotoxins. However, cyanotoxins may be degraded by the diverse microbial consortia, be adsorbed or otherwise dissipate in agricultural soil. This study investigates the disappearance and transformation of 9 cyanotoxins in controlled soil microcosms after 28 d. Six soil types were exposed to factorial combinations of light, redox conditions and microbial activity that influenced the recovery of anabaenopeptin-A (AP-A), anabaenopeptin-B (AP-B), anatoxin-a (ATX-a), cylindrospermopsin (CYN), and the microcystin (MC) congeners -LR, -LA, -LY, -LW, and -LF. Cyanotoxins estimated half-lives were from hours to several months, depending on the compound and soil conditions. Cyanotoxins were eliminated via biological reactions in aerobic and anaerobic soils, although anaerobic conditions accelerated the biological dissipation of ATX-a, CYN and APs. ATX-a was sensitive to photolytic degradation, but CYN, and MCs were not reduced through photochemical transformation. MC-LR and -LA were recovered after exposure to light, redox conditions and low microbial activity, suggesting that they persisted in extractable forms, compared to other cyanotoxins in soil. Cyanotoxin degradation products were identified using high-resolution mass spectrometry, revealing their potential degradation pathways in soil.
Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Crown Copyright © 2023. Published by Elsevier B.V. All rights reserved.)
Databáze: MEDLINE