A comparison of feature selection methodologies and learning algorithms in the development of a DNA methylation-based telomere length estimator.
Autor: | Doherty T; School of Biological, Health and Sports Sciences, Technological University Dublin, Dublin, Ireland. trevor.c.doherty@mytudublin.ie.; SFI Centre for Research Training in Machine Learning, Technological University Dublin, Dublin, Ireland. trevor.c.doherty@mytudublin.ie., Dempster E; University of Exeter Medical School, University of Exeter, Exeter, UK., Hannon E; University of Exeter Medical School, University of Exeter, Exeter, UK., Mill J; University of Exeter Medical School, University of Exeter, Exeter, UK., Poulton R; Department of Psychology, University of Otago, Dunedin, 9016, New Zealand., Corcoran D; Center for Genomic and Computational Biology, Duke University, Durham, NC, 27708, USA., Sugden K; Department of Psychology and Neuroscience, Duke University, Durham, NC, USA., Williams B; Department of Psychology and Neuroscience, Duke University, Durham, NC, USA., Caspi A; Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.; Department of Psychology and Neuroscience, Duke University, Durham, NC, USA., Moffitt TE; Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.; Department of Psychology and Neuroscience, Duke University, Durham, NC, USA., Delany SJ; School of Computer Science, Technological University Dublin, Dublin, Ireland., Murphy TM; School of Biological, Health and Sports Sciences, Technological University Dublin, Dublin, Ireland. |
---|---|
Jazyk: | angličtina |
Zdroj: | BMC bioinformatics [BMC Bioinformatics] 2023 May 01; Vol. 24 (1), pp. 178. Date of Electronic Publication: 2023 May 01. |
DOI: | 10.1186/s12859-023-05282-4 |
Abstrakt: | Background: The field of epigenomics holds great promise in understanding and treating disease with advances in machine learning (ML) and artificial intelligence being vitally important in this pursuit. Increasingly, research now utilises DNA methylation measures at cytosine-guanine dinucleotides (CpG) to detect disease and estimate biological traits such as aging. Given the challenge of high dimensionality of DNA methylation data, feature-selection techniques are commonly employed to reduce dimensionality and identify the most important subset of features. In this study, our aim was to test and compare a range of feature-selection methods and ML algorithms in the development of a novel DNA methylation-based telomere length (TL) estimator. We utilised both nested cross-validation and two independent test sets for the comparisons. Results: We found that principal component analysis in advance of elastic net regression led to the overall best performing estimator when evaluated using a nested cross-validation analysis and two independent test cohorts. This approach achieved a correlation between estimated and actual TL of 0.295 (83.4% CI [0.201, 0.384]) on the EXTEND test data set. Contrastingly, the baseline model of elastic net regression with no prior feature reduction stage performed less well in general-suggesting a prior feature-selection stage may have important utility. A previously developed TL estimator, DNAmTL, achieved a correlation of 0.216 (83.4% CI [0.118, 0.310]) on the EXTEND data. Additionally, we observed that different DNA methylation-based TL estimators, which have few common CpGs, are associated with many of the same biological entities. Conclusions: The variance in performance across tested approaches shows that estimators are sensitive to data set heterogeneity and the development of an optimal DNA methylation-based estimator should benefit from the robust methodological approach used in this study. Moreover, our methodology which utilises a range of feature-selection approaches and ML algorithms could be applied to other biological markers and disease phenotypes, to examine their relationship with DNA methylation and predictive value. (© 2023. The Author(s).) |
Databáze: | MEDLINE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |