Graphene Nano-Optics in the Terahertz Gap.

Autor: Feres FH; 'Gleb Wataghin' Institute of Physics, State University of Campinas (UNICAMP), Campinas, Sao Paulo 13083-859, Brazil.; Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo 13083-970, Brazil.; Institute of Applied Physics, Technische Universität Dresden, 01062 Dresden, Germany., Barcelos ID; Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo 13083-970, Brazil., Cadore AR; Brazilian Nanotechnology National Laboratory LNNano, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo 13083-970, Brazil., Wehmeier L; Institute of Applied Physics, Technische Universität Dresden, 01062 Dresden, Germany.; National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States of America., Nörenberg T; Institute of Applied Physics, Technische Universität Dresden, 01062 Dresden, Germany.; Würzburg-Dresden Cluster of Excellence - EXC 2147 (ct.qmat), Technische Universität Dresden, 01062 Dresden, Germany., Mayer RA; 'Gleb Wataghin' Institute of Physics, State University of Campinas (UNICAMP), Campinas, Sao Paulo 13083-859, Brazil.; Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo 13083-970, Brazil., Freitas RO; Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo 13083-970, Brazil., Eng LM; Institute of Applied Physics, Technische Universität Dresden, 01062 Dresden, Germany.; Würzburg-Dresden Cluster of Excellence - EXC 2147 (ct.qmat), Technische Universität Dresden, 01062 Dresden, Germany., Kehr SC; Institute of Applied Physics, Technische Universität Dresden, 01062 Dresden, Germany.; Würzburg-Dresden Cluster of Excellence - EXC 2147 (ct.qmat), Technische Universität Dresden, 01062 Dresden, Germany., Maia FCB; Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo 13083-970, Brazil.
Jazyk: angličtina
Zdroj: Nano letters [Nano Lett] 2023 May 10; Vol. 23 (9), pp. 3913-3920. Date of Electronic Publication: 2023 May 01.
DOI: 10.1021/acs.nanolett.3c00578
Abstrakt: Graphene nano-optics at terahertz (THz) frequencies (ν) is theoretically anticipated to feature extraordinary effects. However, interrogating such phenomena is nontrivial, since the atomically thin graphene dimensionally mismatches the THz radiation wavelength reaching hundreds of micrometers. Greater challenges happen in the THz gap (0.1-10 THz) wherein light sources are scarce. To surpass these barriers, we use a nanoscope illuminated by a highly brilliant and tunable free-electron laser to image the graphene nano-optical response from 1.5 to 6.0 THz. For ν < 2 THz, we observe a metal-like behavior of graphene, which screens optical fields akin to noble metals, since this excitation range approaches its charge relaxation frequency. At 3.8 THz, plasmonic resonances cause a field-enhancement effect (FEE) that improves the graphene imaging power. Moreover, we show that the metallic behavior and the FEE are tunable upon electrical doping, thus providing further control of these graphene nano-optical properties in the THz gap.
Databáze: MEDLINE