Autor: |
Reynolds CL; Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA., Tan A; School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA., Elliott JE; Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA.; VA Portland Health Care System, Research Service, Portland, OR 97239, USA., Tinsley CE; Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA.; VA Portland Health Care System, Research Service, Portland, OR 97239, USA., Wall R; Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA.; VA Portland Health Care System, Research Service, Portland, OR 97239, USA., Kaye JA; Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA., Silbert LC; Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA.; VA Portland Health Care System, Neurology, Portland, OR 97239, USA., Lim MM; Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA.; VA Portland Health Care System, Neurology, Portland, OR 97239, USA.; Department of Behavioral Neuroscience, School of Medicine, Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239, USA.; VA Portland Health Care System, Mental Illness Research Education and Clinical Center, National Center for Rehabilitative Auditory Research, Portland, OR 97239, USA. |
Abstrakt: |
Aging is a significant contributor to changes in sleep patterns, which has compounding consequences on cognitive health. A modifiable factor contributing to poor sleep is inadequate and/or mistimed light exposure. However, methods to reliably and continuously collect light levels long-term in the home, a necessity for informing clinical guidance, are not well established. We explored the feasibility and acceptability of remote deployment and the fidelity of long-term data collection for both light levels and sleep within participants' homes. The original TWLITE study utilized a whole-home tunable lighting system, while the current project is an observational study of the light environment already existing in the home. This was a longitudinal, observational, prospective pilot study involving light sensors remotely deployed in the homes of healthy adults ( n = 16, mean age: 71.7 years, standard deviation: 5.0 years) who were co-enrolled in the existing Collaborative Aging (in Place) Research Using Technology (CART) sub-study within the Oregon Center for Aging and Technology (ORCATECH). For 12 weeks, light levels were recorded via light sensors (ActiWatch Spectrum), nightly sleep metrics were recorded via mattress-based sensors, and daily activity was recorded via wrist-based actigraphy. Feasibility and acceptability outcomes indicated that participants found the equipment easy to use and unobtrusive. This proof-of-concept, feasibility/acceptability study provides evidence that light sensors can be remotely deployed to assess relationships between light exposure and sleep among older adults, paving the way for measurement of light levels in future studies examining lighting interventions to improve sleep. |