Brain Connectivity Signature Extractions from TMS Invoked EEGs.

Autor: Gupta D; Computer Science and Electrical Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21227, USA., Du X; Maryland Psychiatric Research Center, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201, USA., Summerfelt A; Maryland Psychiatric Research Center, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201, USA., Hong LE; Maryland Psychiatric Research Center, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201, USA., Choa FS; Computer Science and Electrical Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21227, USA.
Jazyk: angličtina
Zdroj: Sensors (Basel, Switzerland) [Sensors (Basel)] 2023 Apr 18; Vol. 23 (8). Date of Electronic Publication: 2023 Apr 18.
DOI: 10.3390/s23084078
Abstrakt: (1) Background: The correlations between brain connectivity abnormality and psychiatric disorders have been continuously investigated and progressively recognized. Brain connectivity signatures are becoming exceedingly useful for identifying patients, monitoring mental health disorders, and treatment. By using electroencephalography (EEG)-based cortical source localization along with energy landscape analysis techniques, we can statistically analyze transcranial magnetic stimulation (TMS)-invoked EEG signals, for obtaining connectivity among different brain regions at a high spatiotemporal resolution. (2) Methods: In this study, we analyze EEG-based source localized alpha wave activity in response to TMS administered to three locations, namely, the left motor cortex (49 subjects), left prefrontal cortex (27 subjects), and the posterior cerebellum, or vermis (27 subjects) by using energy landscape analysis techniques to uncover connectivity signatures. We then perform two sample t -tests and use the (5 × 10 -5 ) Bonferroni corrected p -valued cases for reporting six reliably stable signatures. (3) Results: Vermis stimulation invoked the highest number of connectivity signatures and the left motor cortex stimulation invoked a sensorimotor network state. In total, six out of 29 reliable, stable connectivity signatures are found and discussed. (4) Conclusions: We extend previous findings to localized cortical connectivity signatures for medical applications that serve as a baseline for future dense electrode studies.
Databáze: MEDLINE
Nepřihlášeným uživatelům se plný text nezobrazuje