Physiological and developmental dysfunctions in the dengue vector Culex pipiens (Diptera: Culicidae) immature stages following treatment with zinc oxide nanoparticles.

Autor: Ibrahim AMA; Department of Zoology and Entomology, Faculty of Science, Assiut University, Assiut 71516, Egypt. Electronic address: ahmedmai1982@aun.edu.eg., Thabet MA; Department of Zoology and Entomology, Faculty of Science, Assiut University, Assiut 71516, Egypt., Ali AM; Department of Zoology and Entomology, Faculty of Science, Assiut University, Assiut 71516, Egypt.
Jazyk: angličtina
Zdroj: Pesticide biochemistry and physiology [Pestic Biochem Physiol] 2023 May; Vol. 192, pp. 105395. Date of Electronic Publication: 2023 Mar 22.
DOI: 10.1016/j.pestbp.2023.105395
Abstrakt: The medical value of mosquitoes attracted researchers worldwide to search for a valuable way to control such serious insects. The continuous development of resistance against chemical insecticides pushed toward looking for novel and promising compounds against mosquitoes. In this study, the toxicity and physio-developmental effects of 10-30 nm spherical zinc oxide nanoparticles (ZnONPs) in aqueous suspension was addressed against the first larval instar of Culex pipiens mosquito. The calculated value of LC 50 was about 0.892 g/L while the sub lethal concentration LC 20 recorded about 0.246 g/L. Larvae treated with ZnONPs suffered reduced growth rate, longer developmental period and malformations in the breathing tube. Furthermore, the treated larvae showed clear abnormal appearance of the gastric caeca and midgut epithelia under transmission electron microscope (TEM). These abnormalities appeared as condensation of the nuclear chromatin, abnormal shape or absence of microvilli, highly increased amount of smooth endoplasmic reticulum in the cytoplasm and appearance of numerous vacuoles. Additionally, ZnONPs interfered with several biochemical pathways such as induction of oxidative stress which appeared in the form of increased levels of hydrogen peroxide and inability to activate the detoxifying enzymes alkaline phosphatase (ALP), catalase and glutathione peroxidase (GPX). On the contrary, the activity of the antioxidant enzyme superoxide dismutase (SOD) increased in treated larvae. Furthermore, LC 20 and LC 50 of ZnONPs inhibited the growth rate of the larval gut fauna in vitro. These results clearly show that ZnONPs target several tissues leading to serious alteration in the physiological and developmental processes in C. pipiens mosquito larvae.
Competing Interests: Declaration of Competing Interest The authors declare no conflict of interest on their work.
(Copyright © 2023 Elsevier Inc. All rights reserved.)
Databáze: MEDLINE