Magnetic Nanoscalpel for the Effective Treatment of Ascites Tumors.

Autor: Zamay T; Federal Research Center 'Krasnoyarsk Science Center' of the Siberian Branch, Russian Academy of Sciences, Krasnoyarsk 660036, Russia.; Laboratory for Biomolecular and Medical Technologies, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia., Zamay S; Federal Research Center 'Krasnoyarsk Science Center' of the Siberian Branch, Russian Academy of Sciences, Krasnoyarsk 660036, Russia., Luzan N; Federal Research Center 'Krasnoyarsk Science Center' of the Siberian Branch, Russian Academy of Sciences, Krasnoyarsk 660036, Russia.; Laboratory for Biomolecular and Medical Technologies, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia., Fedotovskaya V; Laboratory for Biomolecular and Medical Technologies, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia., Masyugin A; JSC «NPP «Radiosviaz», Krasnoyarsk 660021, Russia., Zelenov F; JSC «NPP «Radiosviaz», Krasnoyarsk 660021, Russia., Koshmanova A; Federal Research Center 'Krasnoyarsk Science Center' of the Siberian Branch, Russian Academy of Sciences, Krasnoyarsk 660036, Russia.; Laboratory for Biomolecular and Medical Technologies, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia., Nikolaeva E; Federal Research Center 'Krasnoyarsk Science Center' of the Siberian Branch, Russian Academy of Sciences, Krasnoyarsk 660036, Russia.; Laboratory for Biomolecular and Medical Technologies, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia., Kirichenko D; Laboratory for Biomolecular and Medical Technologies, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia., Veprintsev D; Federal Research Center 'Krasnoyarsk Science Center' of the Siberian Branch, Russian Academy of Sciences, Krasnoyarsk 660036, Russia., Kolovskaya O; Federal Research Center 'Krasnoyarsk Science Center' of the Siberian Branch, Russian Academy of Sciences, Krasnoyarsk 660036, Russia.; Laboratory for Biomolecular and Medical Technologies, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia., Shchugoreva I; Federal Research Center 'Krasnoyarsk Science Center' of the Siberian Branch, Russian Academy of Sciences, Krasnoyarsk 660036, Russia.; Laboratory for Biomolecular and Medical Technologies, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia., Zamay G; Federal Research Center 'Krasnoyarsk Science Center' of the Siberian Branch, Russian Academy of Sciences, Krasnoyarsk 660036, Russia.; Laboratory for Biomolecular and Medical Technologies, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia., Lapin I; Laboratory of Advanced Materials and Technology, Siberian Physical Technical Institute, Tomsk State University, Tomsk 634050, Russia., Lukyanenko A; L.V. Kirensky Institute of Physics, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk 660036, Russia., Borus A; L.V. Kirensky Institute of Physics, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk 660036, Russia., Sukhachev A; L.V. Kirensky Institute of Physics, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk 660036, Russia., Volochaev M; L.V. Kirensky Institute of Physics, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk 660036, Russia., Lukyanenko K; Federal Research Center 'Krasnoyarsk Science Center' of the Siberian Branch, Russian Academy of Sciences, Krasnoyarsk 660036, Russia.; Laboratory for Biomolecular and Medical Technologies, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia., Shabanov A; Federal Research Center 'Krasnoyarsk Science Center' of the Siberian Branch, Russian Academy of Sciences, Krasnoyarsk 660036, Russia., Zabluda V; L.V. Kirensky Institute of Physics, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk 660036, Russia., Zhizhchenko A; Institute of Automation and Control Processes (IACP), Far Eastern Branch of the Russian Academy of Science, Vladivostok 690041, Russia.; Far Eastern Federal University, Vladivostok 690950, Russia., Kuchmizhak A; Institute of Automation and Control Processes (IACP), Far Eastern Branch of the Russian Academy of Science, Vladivostok 690041, Russia.; Far Eastern Federal University, Vladivostok 690950, Russia., Sokolov A; L.V. Kirensky Institute of Physics, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk 660036, Russia., Narodov A; Laboratory for Biomolecular and Medical Technologies, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia., Prokopenko V; V.P. Astafiev Krasnoyarsk State Pedagogical University, Krasnoyarsk 660049, Russia., Galeev R; JSC «NPP «Radiosviaz», Krasnoyarsk 660021, Russia., Svetlichnyi V; Laboratory of Advanced Materials and Technology, Siberian Physical Technical Institute, Tomsk State University, Tomsk 634050, Russia., Kichkailo A; Federal Research Center 'Krasnoyarsk Science Center' of the Siberian Branch, Russian Academy of Sciences, Krasnoyarsk 660036, Russia.; Laboratory for Biomolecular and Medical Technologies, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia.
Jazyk: angličtina
Zdroj: Journal of functional biomaterials [J Funct Biomater] 2023 Mar 24; Vol. 14 (4). Date of Electronic Publication: 2023 Mar 24.
DOI: 10.3390/jfb14040179
Abstrakt: One of the promising novel methods for radical tumor resection at a single-cell level is magneto-mechanical microsurgery (MMM) with magnetic nano- or microdisks modified with cancer-recognizing molecules. A low-frequency alternating magnetic field (AMF) remotely drives and controls the procedure. Here, we present characterization and application of magnetic nanodisks (MNDs) as a surgical instrument ("smart nanoscalpel") at a single-cell level. MNDs with a quasi-dipole three-layer structure (Au/Ni/Au) and DNA aptamer AS42 (AS42-MNDs) on the surface converted magnetic moment into mechanical and destroyed tumor cells. The effectiveness of MMM was analyzed on Ehrlich ascites carcinoma (EAC) cells in vitro and in vivo using sine and square-shaped AMF with frequencies from 1 to 50 Hz with 0.1 to 1 duty-cycle parameters. MMM with the "Nanoscalpel" in a sine-shaped 20 Hz AMF, a rectangular-shaped 10 Hz AMF, and a 0.5 duty cycle was the most effective. A sine-shaped field caused apoptosis, whereas a rectangular-shaped field caused necrosis. Four sessions of MMM with AS42-MNDs significantly reduced the number of cells in the tumor. In contrast, ascites tumors continued to grow in groups of mice and mice treated with MNDs with nonspecific oligonucleotide NO-MND. Thus, applying a "smart nanoscalpel" is practical for the microsurgery of malignant neoplasms.
Databáze: MEDLINE