Screening of Antimicrobial Properties and Bioactive Compounds of Pleurotus Ostreatus Extracts against Staphylococcus Aureus, Escherichia coli, and Neisseria Gonorrhoeae .

Autor: Yakobi SH; School of Life Sciences, Biochemistry, University of KwaZulu-Natal, Durban, South Africa., Mkhize S; School of Life Sciences, Biochemistry, University of KwaZulu-Natal, Durban, South Africa., Pooe OJ; School of Life Sciences, Biochemistry, University of KwaZulu-Natal, Durban, South Africa.
Jazyk: angličtina
Zdroj: Biochemistry research international [Biochem Res Int] 2023 Apr 17; Vol. 2023, pp. 1777039. Date of Electronic Publication: 2023 Apr 17 (Print Publication: 2023).
DOI: 10.1155/2023/1777039
Abstrakt: In recent years, the potential of pathogenic bacteria to acquire resistance to a variety of antimicrobial drugs has developed significantly due to the indiscriminate exposure of a number of antibiotic compounds. The purpose of this study is to determine the antibacterial capabilities and activities of crude Pleurotus ostreatus extracts against Staphylococcus aureus (ATCC 25923), Escherichia coli (ATCC 25922), Neisseria gonorrhoeae (ATCC 49926), and nine multidrug-resistant clinical isolates of Neisseria gonorrhoeae . All of these isolates exhibited sensitivity to azithromycin and ceftriaxone, while the majority of antibiotic resistance was seen against penicillin G, sulphonamide, and ciprofloxacin. Fifty percent of the isolates exhibited absolute resistance to both sulphonamide and ciprofloxacin, whereas 40% of the isolates displayed absolute resistance to penicillin G. The antibacterial activity of P. ostreatus extracts examined in this investigation varied within the same species of microorganisms. Extract B and D , extracted in the presence of 20% wheat bran bagasse and 20% maize flour bagasse, respectively, had exceptional antibacterial activity against all target isolates examined. We observed the lowest concentration of antibacterial agent required to inhibit the target bacteria to be between 1 × 10 -3  mg/ml and 1 × 10 -6  mg/ml with an estimated probability of 0.30769, a lower 95% confidence interval (CI) of 0.126807, an upper 95% CI of 0.576307, an estimated probability of 0.15385, a lower 95% CI of 0.043258, and an upper 95% CI, respectively. The MBC of 1 × 10 -3  mg/ml was seen to eliminate 31% of the target bacteria. This dose was the most inhibitive. The antibacterial activity of all the extracts examined in the current study exhibited some degree of efficacy against both clinical isolates and standard strains. However, the majority of clinically isolated bacteria exhibited greater resistance to the extracts.
Competing Interests: The authors declare that they have no conflicts of interest.
(Copyright © 2023 Sinethemba H. Yakobi et al.)
Databáze: MEDLINE
Nepřihlášeným uživatelům se plný text nezobrazuje