High performance for bone age estimation with an artificial intelligence solution.

Autor: Nguyen T; Department of Pediatric Radiology, Hôpital Armand Trousseau AP-HP, 75012 Paris, France; Gleamer, 75010 Paris, France. Electronic address: toan.nguyen@aphp.fr., Hermann AL; Department of Pediatric Radiology, Hôpital Armand Trousseau AP-HP, 75012 Paris, France., Ventre J; Gleamer, 75010 Paris, France., Ducarouge A; Gleamer, 75010 Paris, France., Pourchot A; Gleamer, 75010 Paris, France., Marty V; Gleamer, 75010 Paris, France., Regnard NE; Gleamer, 75010 Paris, France; Réseau Imagerie Sud Francilien, 77127 Lieusaint, France., Guermazi A; Department of Radiology, Boston University School of Medicine, VA Boston Healthcare System, 1400 VFW Parkway, Suite 1B105, West Roxbury, MA 02132, United States of America.
Jazyk: angličtina
Zdroj: Diagnostic and interventional imaging [Diagn Interv Imaging] 2023 Jul-Aug; Vol. 104 (7-8), pp. 330-336. Date of Electronic Publication: 2023 Apr 22.
DOI: 10.1016/j.diii.2023.04.003
Abstrakt: Purpose: The purpose of this study was to compare the performance of an artificial intelligence (AI) solution to that of a senior general radiologist for bone age assessment.
Material and Methods: Anteroposterior hand radiographs of eight boys and eight girls from each age interval between five and 17 year-old from four different radiology departments were retrospectively collected. Two board-certified pediatric radiologists with knowledge of the sex and chronological age of the patients independently estimated the Greulich and Pyle bone age to determine the standard of reference. A senior general radiologist not specialized in pediatric radiology (further referred to as "the reader") then determined the bone age with knowledge of the sex and chronological age. The results of the reader were then compared to those of the AI solution using mean absolute error (MAE) in age estimation.
Results: The study dataset included a total of 206 patients (102 boys of mean chronological age of 10.9 ± 3.7 [SD] years, 104 girls of mean chronological age of 11 ± 3.7 [SD] years). For both sexes, the AI algorithm showed a significantly lower MAE than the reader (P < 0.007). In boys, the MAE was 0.488 years (95% confidence interval [CI]: 0.28-0.44; r 2  = 0.978) for the AI algorithm and 0.771 years (95% CI: 0.64-0.90; r 2  = 0.94) for the reader. In girls, the MAE was 0.494 years (95% CI: 0.41-0.56; r 2  = 0.973) for the AI algorithm and 0.673 years (95% CI: 0.54-0.81; r 2  = 0.934) for the reader.
Conclusion: The AI solution better estimates the Greulich and Pyle bone age than a general radiologist does.
Competing Interests: Declaration of Competing Interest Toan Nguyen is a consultant for Gleamer, the company that developed the AI software used in the paper. Anne-Laure Hermann was occasionally paid by Gleamer to label radiographs. Jeanne Ventre, Vincent Marty, and Aloïs Pourchot are employees of Gleamer; Alexis Duracouge and Nor-Eddine Regnard are co-founders of Gleamer. Ali Guermazi is shareholder of BICL, LLC, and consultant to Pfizer, Novartis, TrialSpark, Coval, ICM, Medipost, TissueGene.
(Copyright © 2023 Société française de radiologie. Published by Elsevier Masson SAS. All rights reserved.)
Databáze: MEDLINE