Reduction in the cadmium (Cd) accumulation and toxicity in pearl millet (Pennisetum glaucum L.) by regulating physio-biochemical and antioxidant defense system via soil and foliar application of melatonin.

Autor: Awan SA; College of Grassland Science & Technology, Sichuan Agricultural University, Chengdu, 611130, China; College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China., Khan I; College of Grassland Science & Technology, Sichuan Agricultural University, Chengdu, 611130, China; State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China., Rizwan M; Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, Pakistan., Irshad MA; Department of Environmental Sciences, The University of Lahore, Lahore, Pakistan., Xiaosan W; College of Grassland Science & Technology, Sichuan Agricultural University, Chengdu, 611130, China., Zhang X; College of Grassland Science & Technology, Sichuan Agricultural University, Chengdu, 611130, China., Huang L; College of Grassland Science & Technology, Sichuan Agricultural University, Chengdu, 611130, China. Electronic address: Huanglinkai@sicau.edu.cn.
Jazyk: angličtina
Zdroj: Environmental pollution (Barking, Essex : 1987) [Environ Pollut] 2023 Jul 01; Vol. 328, pp. 121658. Date of Electronic Publication: 2023 Apr 17.
DOI: 10.1016/j.envpol.2023.121658
Abstrakt: Cadmium (Cd) is among the toxic pollutants that harms the both animals and plants. The natural antioxidant, melatonin can improve Cd-stress tolerance but its potential role in reducing Cd stress and resilience mechanisms in pearl millet (Pennisetum glaucum L.) is remain unclear. The present study suggests that Cd causes severe oxidative damage by decreasing photosynthesis, and increasing reactive oxygen species (ROS), malondialdehyde content (MDA), and Cd content in different parts of pearl millet. However, exogenous melatonin (soil application and foliar treatment) mitigated the Cd toxicity and enhanced the growth, antioxidant defense system, and differentially regulated the expression of antioxidant-responsive genes i. e superoxide dismutase SOD-[Fe] 2, Fe-superoxide dismutase, Peroxiredoxin 2C, and L-ascorbate peroxidase-6. The results showed that foliar melatonin at F-200/50 significantly increased the plant height, chlorophyll a, b, a+b and carotenoids by 128%, 121%, 150%, 122%, and 69% over the Cd treatment, respectively. The soil and foliar melatonin at S-100/50 and F-100/50 reduced the ROS by 36%, and 44%, and MDA by 42% and 51% over the Cd treatment, respectively. Moreover, F200/50 significantly boosted the activities of antioxidant enzymes i. e SOD by 141%, CAT 298%, POD 117%, and APX 155% over the Cd treatment. Similarly, a significant reduction in Cd content in root, stem, and leaf was found on exposure to higher concentrations of exogenous melatonin. These findings suggest that exogenous melatonin may significantly and differentially improve the tolerance to Cd stress in crop plants. However, field applications, type of plant species, concentration of dose, and type of stress may vary with the degree of tolerance in crop plants.
Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2023 Elsevier Ltd. All rights reserved.)
Databáze: MEDLINE