Towards reliable reconstruction of the mouse brain corticothalamic connectivity using diffusion MRI.
Autor: | Arefin TM; Bernard and Irene Schwartz Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, 660 First Ave., New York City, NY, United States; Center for Neurotechnology in Mental Health Research, Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, United States., Lee CH; Bernard and Irene Schwartz Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, 660 First Ave., New York City, NY, United States., Liang Z; Bernard and Irene Schwartz Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, 660 First Ave., New York City, NY, United States., Rallapalli H; Bernard and Irene Schwartz Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, 660 First Ave., New York City, NY, United States., Wadghiri YZ; Bernard and Irene Schwartz Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, 660 First Ave., New York City, NY, United States., Turnbull DH; Bernard and Irene Schwartz Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, 660 First Ave., New York City, NY, United States., Zhang J; Bernard and Irene Schwartz Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, 660 First Ave., New York City, NY, United States. Electronic address: Jiangyang.zhang@nyulangone.org. |
---|---|
Jazyk: | angličtina |
Zdroj: | NeuroImage [Neuroimage] 2023 Jun; Vol. 273, pp. 120111. Date of Electronic Publication: 2023 Apr 13. |
DOI: | 10.1016/j.neuroimage.2023.120111 |
Abstrakt: | Diffusion magnetic resonance imaging (dMRI) tractography has yielded intriguing insights into brain circuits and their relationship to behavior in response to gene mutations or neurological diseases across a number of species. Still, existing tractography approaches suffer from limited sensitivity and specificity, leading to uncertain interpretation of the reconstructed connections. Hence, in this study, we aimed to optimize the imaging and computational pipeline to achieve the best possible spatial overlaps between the tractography and tracer-based axonal projection maps within the mouse brain corticothalamic network. We developed a dMRI-based atlas of the mouse forebrain with structural labels imported from the Allen Mouse Brain Atlas (AMBA). Using the atlas and dMRI tractography, we first reconstructed detailed node-to-node mouse brain corticothalamic structural connectivity matrices using different imaging and tractography parameters. We then investigated the effects of each condition for accurate reconstruction of the corticothalamic projections by quantifying the similarities between the tractography and the tracer data from the Allen Mouse Brain Connectivity Atlas (AMBCA). Our results suggest that these parameters significantly affect tractography outcomes and our atlas can be used to investigate macroscopic structural connectivity in the mouse brain. Furthermore, tractography in mouse brain gray matter still face challenges and need improved imaging and tractography methods. Competing Interests: Declaration of Competing Interest None (Copyright © 2023. Published by Elsevier Inc.) |
Databáze: | MEDLINE |
Externí odkaz: |