Autor: |
Winter M; Institute for Occupational and Maritime Medicine (ZfAM), University Medical Centre Hamburg-Eppendorf (UKE), Marckmannstraße 129b, Haus 3, 20539, Hamburg, Germany. martin.winter@justiz.hamburg.de., Lessmann F; Institute for Occupational and Maritime Medicine (ZfAM), University Medical Centre Hamburg-Eppendorf (UKE), Marckmannstraße 129b, Haus 3, 20539, Hamburg, Germany. martin.winter@justiz.hamburg.de., Harth V; Institute for Occupational and Maritime Medicine (ZfAM), University Medical Centre Hamburg-Eppendorf (UKE), Marckmannstraße 129b, Haus 3, 20539, Hamburg, Germany. martin.winter@justiz.hamburg.de. |
Abstrakt: |
Over the last years, inductively coupled plasma mass spectrometry (ICP-MS) has been applied as a method for human-biomonitoring of metals in the concentration range of occupational and environmental medicine. In large scale routine monitoring, the determination of mercury (Hg) by ICP-MS remains challenging due to several reasons. Amongst others, stability of dissolved Hg and avoiding memory effects are the key facts for reliable quantification. To address these issues, we developed a robust approach for biomonitoring of mercury in human urine samples by ICP-MS. Using a solution containing HNO 3 , HCl and thiourea, prepared samples and calibrators were stabilized for up to 72 h. A rinse time of only 30 seconds efficiently prevented contamination of consecutive samples with Hg concentrations up to 30 μg L -1 , hence significantly reducing acquisition times compared to published methods. Recovery experiments revealed iridium as an ideal internal standard to compensate matrix effects independently from creatinine concentration. Recoveries of 95.0-104.0% were obtained for Hg levels covering the range of biomonitoring guidance values established by the German Human-Biomonitoring Commission. Excellent intra-day precision and inter-day precision of ≤3.0% for two different Hg levels were achieved. The detection and quantification limit accounted for 21.7 ng L -1 and 65.6 ng L -1 , respectively, enabling reliable quantification even in the range of environmental background exposures. Additionally, the method was externally validated by successful participation in the inter-laboratory comparison program G-EQUAS. With the developed method, we hence provide a sensitive and robust tool for mercury exposure assessments in future large scale human-biomonitoring studies. |