Aerogels based on cationically modified chitosan and poly(vinyl alcohol) for efficient capturing of viruses.

Autor: Lachowicz D; AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, al. A. Mickiewicza 30, 30-059 Krakow, Poland. Electronic address: dbielska@agh.edu.pl., Kmita A; AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, al. A. Mickiewicza 30, 30-059 Krakow, Poland., Wirecka R; AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, al. A. Mickiewicza 30, 30-059 Krakow, Poland; AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, al. A. Mickiewicza 30, 30-059 Krakow, Poland., Berent K; AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, al. A. Mickiewicza 30, 30-059 Krakow, Poland., Szuwarzyński M; AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, al. A. Mickiewicza 30, 30-059 Krakow, Poland., Zapotoczny S; AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, al. A. Mickiewicza 30, 30-059 Krakow, Poland; Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland., Pajdak A; Strata Mechanics Research Institute, Polish Academy of Sciences, 30-059 Krakow, Poland., Cios G; AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, al. A. Mickiewicza 30, 30-059 Krakow, Poland., Mazur-Panasiuk N; Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland., Pyrc K; Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland., Bernasik A; AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, al. A. Mickiewicza 30, 30-059 Krakow, Poland; AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, al. A. Mickiewicza 30, 30-059 Krakow, Poland.
Jazyk: angličtina
Zdroj: Carbohydrate polymers [Carbohydr Polym] 2023 Jul 15; Vol. 312, pp. 120756. Date of Electronic Publication: 2023 Mar 02.
DOI: 10.1016/j.carbpol.2023.120756
Abstrakt: In this study, we developed a new filtering bioaerogel based on linear polyvinyl alcohol (PVA) and the cationic derivative of chitosan (N-[(2-hydroxy-3-trimethylamine) propyl] chitosan chloride, HTCC) with a potential antiviral application. A strong intermolecular network architecture was formed thanks to the introduction of linear PVA chains, which can efficiently interpenetrate the glutaraldehyde(GA)-crosslinked HTCC chains. The morphology of the obtained structures was examined using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The aerogels and modified polymers' elemental composition (including the chemical environment) was determined using X-ray photoelectron spectroscopy (XPS). New aerogels with more than twice as much developed micro- and mesopore space and BET-specific surface area were obtained concerning the starting sample chitosan aerogel crosslinked by glutaraldehyde (Chit/GA). The results obtained from the XPS analysis showed the presence of cationic 3-trimethylammonium groups on the surface of the aerogel, which can interact with viral capsid proteins. No cytotoxic effect of HTCC/GA/PVA aerogel was also observed on fibroblast cells of the NIH3T3 line. Furthermore, the HTCC/GA/PVA aerogel has been shown that efficiently traps mouse hepatitis virus (MHV) from suspension. The presented concept of aerogel filters for virus capture based on modified chitosan and polyvinyl alcohol has a high application potential.
Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2023 Elsevier Ltd. All rights reserved.)
Databáze: MEDLINE