Quantitative Structural Description of Zeolites by Machine Learning Analysis of Infrared Spectra.

Autor: Skorynina AA; The Smart Materials Research Institute, Southern Federal University, Sladkova 178/24, 1344090 Rostov-on-Don, Russia., Protsenko BO; The Smart Materials Research Institute, Southern Federal University, Sladkova 178/24, 1344090 Rostov-on-Don, Russia., Usoltsev OA; The Smart Materials Research Institute, Southern Federal University, Sladkova 178/24, 1344090 Rostov-on-Don, Russia., Guda SA; The Smart Materials Research Institute, Southern Federal University, Sladkova 178/24, 1344090 Rostov-on-Don, Russia., Bugaev AL; Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen, Switzerland.
Jazyk: angličtina
Zdroj: Inorganic chemistry [Inorg Chem] 2023 May 01; Vol. 62 (17), pp. 6608-6616. Date of Electronic Publication: 2023 Apr 14.
DOI: 10.1021/acs.inorgchem.2c04395
Abstrakt: Application of machine learning (ML) algorithms to spectroscopic data has a great potential for obtaining hidden correlations between structural information and spectral features. Here, we apply ML algorithms to theoretically simulated infrared (IR) spectra to establish the structure-spectrum correlations in zeolites. Two hundred thirty different types of zeolite frameworks were considered in the study whose theoretical IR spectra were used as the training ML set. A classification problem was solved to predict the presence or absence of possible tilings and secondary building units (SBUs). Several natural tilings and SBUs were also predicted with an accuracy above 89%. The set of continuous descriptors was also suggested, and the regression problem was also solved using the ExtraTrees algorithm. For the latter problem, additional IR spectra were computed for the structures with artificially modified cell parameters, expanding the database to 470 different spectra of zeolites. The resulting prediction quality above or close to 90% was obtained for the average Si-O distances, Si-O-Si angles, and volume of TO 4 tetrahedra. The obtained results provide new possibilities for utilization of infrared spectra as a quantitative tool for characterization of zeolites .
Databáze: MEDLINE