AI-Driven Discovery of SARS-CoV-2 Main Protease Fragment-like Inhibitors with Antiviral Activity In Vitro .

Autor: Saramago LC; LaBECFar-Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21040-900 Rio de Janeiro, Brazil., Santana MV; LaBECFar-Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21040-900 Rio de Janeiro, Brazil., Gomes BF; LaBECFar-Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21040-900 Rio de Janeiro, Brazil., Dantas RF; LaBECFar-Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21040-900 Rio de Janeiro, Brazil., Senger MR; LaBECFar-Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21040-900 Rio de Janeiro, Brazil., Oliveira Borges PH; LaBECFar-Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21040-900 Rio de Janeiro, Brazil.; LaSOPB-Laboratório de Síntese Orgânica e Prospecção Biológica, Instituto de Química, Universidade Federal do Rio de Janeiro, 21040-900 Rio de Janeiro, Brazil., Ferreira VNDS; LMMV-Laboratório de Morfologia e Morfogênese Viral (LMMV), Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21040-900 Rio de Janeiro, Brazil., Dos Santos Rosa A; LMMV-Laboratório de Morfologia e Morfogênese Viral (LMMV), Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21040-900 Rio de Janeiro, Brazil., Tucci AR; LMMV-Laboratório de Morfologia e Morfogênese Viral (LMMV), Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21040-900 Rio de Janeiro, Brazil., Dias Miranda M; LMMV-Laboratório de Morfologia e Morfogênese Viral (LMMV), Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21040-900 Rio de Janeiro, Brazil., Lukacik P; Diamond Light Source, Harwell Science and Innovation Campus, OX11 0DE Didcot, U.K.; Research Complex at Harwell, Harwell Science & Innovation Campus, OX11 0FA Didcot, U.K., Strain-Damerell C; Diamond Light Source, Harwell Science and Innovation Campus, OX11 0DE Didcot, U.K.; Research Complex at Harwell, Harwell Science & Innovation Campus, OX11 0FA Didcot, U.K., Owen CD; Diamond Light Source, Harwell Science and Innovation Campus, OX11 0DE Didcot, U.K.; Research Complex at Harwell, Harwell Science & Innovation Campus, OX11 0FA Didcot, U.K., Walsh MA; Diamond Light Source, Harwell Science and Innovation Campus, OX11 0DE Didcot, U.K.; Research Complex at Harwell, Harwell Science & Innovation Campus, OX11 0FA Didcot, U.K., Ferreira SB; LaSOPB-Laboratório de Síntese Orgânica e Prospecção Biológica, Instituto de Química, Universidade Federal do Rio de Janeiro, 21040-900 Rio de Janeiro, Brazil., Silva-Junior FP; LaBECFar-Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21040-900 Rio de Janeiro, Brazil.
Jazyk: angličtina
Zdroj: Journal of chemical information and modeling [J Chem Inf Model] 2023 May 08; Vol. 63 (9), pp. 2866-2880. Date of Electronic Publication: 2023 Apr 14.
DOI: 10.1021/acs.jcim.3c00409
Abstrakt: SARS-CoV-2 is the causative agent of COVID-19 and is responsible for the current global pandemic. The viral genome contains 5 major open reading frames of which the largest ORF1ab codes for two polyproteins, pp1ab and pp1a, which are subsequently cleaved into 16 nonstructural proteins (nsp) by two viral cysteine proteases encoded within the polyproteins. The main protease (Mpro, nsp5) cleaves the majority of the nsp's, making it essential for viral replication and has been successfully targeted for the development of antivirals. The first oral Mpro inhibitor, nirmatrelvir, was approved for treatment of COVID-19 in late December 2021 in combination with ritonavir as Paxlovid. Increasing the arsenal of antivirals and development of protease inhibitors and other antivirals with a varied mode of action remains a priority to reduce the likelihood for resistance emerging. Here, we report results from an artificial intelligence-driven approach followed by in vitro validation, allowing the identification of five fragment-like Mpro inhibitors with IC 50 values ranging from 1.5 to 241 μM. The three most potent molecules (compounds 818, 737, and 183) were tested against SARS-CoV-2 by in vitro replication in Vero E6 and Calu-3 cells. Compound 818 was active in both cell models with an EC 50 value comparable to its measured IC 50 value. On the other hand, compounds 737 and 183 were only active in Calu-3, a preclinical model of respiratory cells, showing selective indexes twice as high as those for compound 818. We also show that our in silico methodology was successful in identifying both reversible and covalent inhibitors. For instance, compound 818 is a reversible chloromethylamide analogue of 8-methyl-γ-carboline, while compound 737 is an N -pyridyl-isatin that covalently inhibits Mpro. Given the small molecular weights of these fragments, their high binding efficiency in vitro and efficacy in blocking viral replication, these compounds represent good starting points for the development of potent lead molecules targeting the Mpro of SARS-CoV-2.
Databáze: MEDLINE