Autonomous optimization of neuroprosthetic stimulation parameters that drive the motor cortex and spinal cord outputs in rats and monkeys.
Autor: | Bonizzato M; Department of Neurosciences and Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montreal, QC H3T 1J4, Canada; Department of Electrical Engineering and Institute of Biomedical Engineering, Polytechnique Montréal, Montreal, QC H3T 1J4, Canada; CIUSSS du Nord-de-l'Île-de-Montréal, Montreal, QC H4J 1C5, Canada; Mila - Québec AI Institute, Montreal, QC H2S 3H1, Canada. Electronic address: marco.bonizzato@polymtl.ca., Guay Hottin R; Department of Neurosciences and Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montreal, QC H3T 1J4, Canada; Department of Electrical Engineering and Institute of Biomedical Engineering, Polytechnique Montréal, Montreal, QC H3T 1J4, Canada; Mila - Québec AI Institute, Montreal, QC H2S 3H1, Canada., Côté SL; Department of Neurosciences and Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montreal, QC H3T 1J4, Canada., Massai E; Department of Neurosciences and Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montreal, QC H3T 1J4, Canada., Choinière L; Department of Neurosciences and Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montreal, QC H3T 1J4, Canada; Mila - Québec AI Institute, Montreal, QC H2S 3H1, Canada., Macar U; Department of Neurosciences and Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montreal, QC H3T 1J4, Canada; Mila - Québec AI Institute, Montreal, QC H2S 3H1, Canada., Laferrière S; Mila - Québec AI Institute, Montreal, QC H2S 3H1, Canada; Computer Science Department, Université de Montréal, Montreal, QC H3T 1J4, Canada., Sirpal P; Department of Neurosciences and Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montreal, QC H3T 1J4, Canada; Mila - Québec AI Institute, Montreal, QC H2S 3H1, Canada., Quessy S; Department of Neurosciences and Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montreal, QC H3T 1J4, Canada., Lajoie G; Mila - Québec AI Institute, Montreal, QC H2S 3H1, Canada; Mathematics and Statistics Department, Université de Montréal, Montreal, QC H3T 1J4, Canada., Martinez M; Department of Neurosciences and Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montreal, QC H3T 1J4, Canada; CIUSSS du Nord-de-l'Île-de-Montréal, Montreal, QC H4J 1C5, Canada., Dancause N; Department of Neurosciences and Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montreal, QC H3T 1J4, Canada. Electronic address: numa.dancause@umontreal.ca. |
---|---|
Jazyk: | angličtina |
Zdroj: | Cell reports. Medicine [Cell Rep Med] 2023 Apr 18; Vol. 4 (4), pp. 101008. Date of Electronic Publication: 2023 Apr 11. |
DOI: | 10.1016/j.xcrm.2023.101008 |
Abstrakt: | Neural stimulation can alleviate paralysis and sensory deficits. Novel high-density neural interfaces can enable refined and multipronged neurostimulation interventions. To achieve this, it is essential to develop algorithmic frameworks capable of handling optimization in large parameter spaces. Here, we leveraged an algorithmic class, Gaussian-process (GP)-based Bayesian optimization (BO), to solve this problem. We show that GP-BO efficiently explores the neurostimulation space, outperforming other search strategies after testing only a fraction of the possible combinations. Through a series of real-time multi-dimensional neurostimulation experiments, we demonstrate optimization across diverse biological targets (brain, spinal cord), animal models (rats, non-human primates), in healthy subjects, and in neuroprosthetic intervention after injury, for both immediate and continual learning over multiple sessions. GP-BO can embed and improve "prior" expert/clinical knowledge to dramatically enhance its performance. These results advocate for broader establishment of learning agents as structural elements of neuroprosthetic design, enabling personalization and maximization of therapeutic effectiveness. Competing Interests: Declaration of interests M.B. and M.M. submitted an international patent application (PCT/CA2020/051047) covering a device allowing performing coherent cortical stimulation during locomotion.(5) They are also co-founders of 12576830 Canada Inc., a start-up company developing neurostimulation technologies related to the aforementioned patent and publication. (Copyright © 2023 The Author(s). Published by Elsevier Inc. All rights reserved.) |
Databáze: | MEDLINE |
Externí odkaz: |