Dopant-Free Pyrrolopyrrole-Based (PPr) Polymeric Hole-Transporting Materials for Efficient Tin-Based Perovskite Solar Cells with Stability Over 6000 h.

Autor: Kuan CH; Department of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan., Balasaravanan R; Department of Chemistry and Research Center of New Generation Light Driven Photovoltaic Modules, National Central University, Taoyuan, 320317, Taiwan., Hsu SM; Department of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan., Ni JS; Department of Chemical and Materials Engineering, Photo-sensitive Material Advanced Research and Technology Center (Photo-SMART), National Kaohsiung University of Science and Technology, Kaohsiung, 824005, Taiwan., Tsai YT; Department of Chemistry and Research Center of New Generation Light Driven Photovoltaic Modules, National Central University, Taoyuan, 320317, Taiwan., Zhang ZX; Department of Chemistry and Research Center of New Generation Light Driven Photovoltaic Modules, National Central University, Taoyuan, 320317, Taiwan., Chen MC; Department of Chemistry and Research Center of New Generation Light Driven Photovoltaic Modules, National Central University, Taoyuan, 320317, Taiwan., Diau EW; Department of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan.; Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan.
Jazyk: angličtina
Zdroj: Advanced materials (Deerfield Beach, Fla.) [Adv Mater] 2023 Jun; Vol. 35 (23), pp. e2300681. Date of Electronic Publication: 2023 Apr 25.
DOI: 10.1002/adma.202300681
Abstrakt: A new set of pyrrolopyrrole-based (PPr) polymers incorporated with thioalkylated/alkylated bithiophene (SBT/BT) is synthesized and explored as hole-transporting materials (HTMs) for Sn-based perovskite solar cells (TPSCs). Three bithiophenyl spacers bearing the thioalkylated hexyl (SBT-6), thioalkylated tetradecyl (SBT-14), and tetradecyl (BT-14) chains are utilized to examine the effect of the alkyl chain lengths. Among them, the TPSCs are fabricated using PPr-SBT-14 as HTMs through a two-step approach by attaining a power conversion efficiency (PCE) of 7.6% with a remarkable long-term stability beyond 6000 h, which has not been reported elsewhere for a non-PEDOT:PSS-based TPSC. The PPr-SBT-14 device is stable under light irradiation for 5 h in air (50% relative humidity) at the maximum power point (MPP). The highly planar structure, strong intramolecular S(alkyl)···S(thiophene) interactions, and extended π-conjugation of SBT enable the PPr-SBT-14 device to outperform the standard poly(3-hexylthiophene,-2,5-diyl (P3HT) and other devices. The longer thio-tetradecyl chain in SBT-14 restricts molecular rotation and strongly affects the molecular conformation, solubility, and film wettability over other polymers. Thus, the present study makes a promising dopant-free polymeric HTM model for the future design of highly efficient and stable TPSCs.
(© 2023 Wiley-VCH GmbH.)
Databáze: MEDLINE