Abstrakt: |
Multiparty learning is an indispensable technique to improve the learning performance via integrating data from multiple parties. Unfortunately, directly integrating multiparty data could not meet the privacy-preserving requirements, which then induces the development of privacy-preserving machine learning (PPML), a key research task in multiparty learning. Despite this, the existing PPML methods generally cannot simultaneously meet multiple requirements, such as security, accuracy, efficiency, and application scope. To deal with the aforementioned problems, in this article, we present a new PPML method based on the secure multiparty interactive protocol, namely, the multiparty secure broad learning system (MSBLS) and derive its security analysis. To be specific, the proposed method employs the interactive protocol and random mapping to generate the mapped features of data, and then uses efficient broad learning to train the neural network classifier. To the best of our knowledge, this is the first attempt for privacy computing method that jointly combines secure multiparty computing and neural network. Theoretically, this method can ensure that the accuracy of the model will not be reduced due to encryption, and the calculation speed is very fast. Three classical datasets are adopted to verify our conclusion. |