Design of a nanobiosystem with remote photothermal gene silencing in Chlamydomonas reinhardtii to increase lipid accumulation and production.

Autor: Alishah Aratboni H; Universidad Autónoma de Nuevo León, UANL. Facultad de Ciencias Químicas, Av. Universidad S/N. CD. Universitaria, San Nicolás de los Garza, 66455, Nuevo León, México.; Centro de Investigación en Biotecnología Y Nanotecnología, Facultad de Ciencias Químicas, Parque de Investigación e Innovación Tecnológica, Universidad Autónoma de Nuevo León, Km. 10 Autopista Al Aeropuerto Internacional Mariano Escobedo, 66629, Apodaca, Nuevo León, México., Rafiei N; Universidad Autónoma de Nuevo León, UANL. Facultad de Ciencias Químicas, Av. Universidad S/N. CD. Universitaria, San Nicolás de los Garza, 66455, Nuevo León, México.; Centro de Investigación en Biotecnología Y Nanotecnología, Facultad de Ciencias Químicas, Parque de Investigación e Innovación Tecnológica, Universidad Autónoma de Nuevo León, Km. 10 Autopista Al Aeropuerto Internacional Mariano Escobedo, 66629, Apodaca, Nuevo León, México.; Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Km. 12 Shiraz-Isfahan Highway, Bajgah Area, Shiraz, 71441-65186, Iran., Uscanga-Palomeque AC; Universidad Autónoma de Nuevo León, UANL. Facultad de Ciencias Químicas, Av. Universidad S/N. CD. Universitaria, San Nicolás de los Garza, 66455, Nuevo León, México., Luna Cruz IE; Universidad Autónoma de Nuevo León, UANL. Facultad de Ciencias Químicas, Av. Universidad S/N. CD. Universitaria, San Nicolás de los Garza, 66455, Nuevo León, México., Parra-Saldivar R; School of Engineering and Sciences, Tecnologico de Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, NL, México.; Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, 64849, Monterrey, Nuevo Leon, Mexico., Morones-Ramirez JR; Universidad Autónoma de Nuevo León, UANL. Facultad de Ciencias Químicas, Av. Universidad S/N. CD. Universitaria, San Nicolás de los Garza, 66455, Nuevo León, México. jose.moronesrmr@uanl.edu.mx.; Centro de Investigación en Biotecnología Y Nanotecnología, Facultad de Ciencias Químicas, Parque de Investigación e Innovación Tecnológica, Universidad Autónoma de Nuevo León, Km. 10 Autopista Al Aeropuerto Internacional Mariano Escobedo, 66629, Apodaca, Nuevo León, México. jose.moronesrmr@uanl.edu.mx.
Jazyk: angličtina
Zdroj: Microbial cell factories [Microb Cell Fact] 2023 Mar 31; Vol. 22 (1), pp. 61. Date of Electronic Publication: 2023 Mar 31.
DOI: 10.1186/s12934-023-02063-9
Abstrakt: Research development in the precise control of gene expression in plant cells is an emerging necessity that would lead to the elucidation of gene function in these biological systems. Conventional gene-interfering techniques, such as micro-RNA and short interfering RNA, have limitations in their ability to downregulate gene expression in plants within short time periods. However, nanotechnology provides a promising new avenue with new tools to overcome these challenges. Here, we show that functionalized gold nanoparticles, decorated with sense and antisense oligonucleotides (FANSAO), can serve as a remote-control optical switch for gene interference in photosynthetic plant cells. We demonstrate the potential of employing LEDs as optimal light sources to photothermally dehybridize the oligonucleotides on the surface of metallic nanostructures, consequently inducing regulation of gene expression in plant cells. We show the efficiency of metallic nanoparticles in absorbing light from an LED source and converting it to thermal energy, resulting in a local temperature increase on the surface of the gold nanoparticles. The antisense oligonucleotides are then released due to the opto-thermal heating of the nanobiosystem composed of the metallic nanoparticles and the sense-antisense oligonucleotides. By applying this approach, we silenced the Carnitine Acyl Carnitine Translocase genes at 90.7%, resulting in the accumulation of lipid bodies in microalgae cells. These results exhibit the feasibility of using functionalized gold nanoparticles with sense and antisense oligonucleotides to enhance nucleic acid delivery efficiency and, most importantly, allow for temporal control of gene silencing in plant cells. These nanobiosystems have broad applications in the development and biosynthesis of biofuels, pharmaceuticals, and specialized chemicals.
(© 2023. The Author(s).)
Databáze: MEDLINE
Nepřihlášeným uživatelům se plný text nezobrazuje