Baseline tumor growth rate highlights the heterogeneity of well differentiated gastroenteropancreatic neuroendocrine tumors and predicts for increases in Ki67 index over time.
Autor: | Wang SJ; School of Medicine, University of California San Francisco, San Francisco, California, USA., Whitman J; School of Medicine, University of California San Francisco, San Francisco, California, USA., Paciorek A; Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA., Le BK; School of Medicine, University of California San Francisco, San Francisco, California, USA., Nakakura EK; Department of Surgery, University of California San Francisco, San Francisco, California, USA., Behr SC; Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA., Joseph N; Department of Pathology, University of California San Francisco, San Francisco, California, USA., Zhang L; School of Medicine, University of California San Francisco, San Francisco, California, USA.; Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA., Hope TA; Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA., Bergsland EK; School of Medicine, University of California San Francisco, San Francisco, California, USA.; UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California, USA. |
---|---|
Jazyk: | angličtina |
Zdroj: | Journal of neuroendocrinology [J Neuroendocrinol] 2023 Apr; Vol. 35 (4), pp. e13260. Date of Electronic Publication: 2023 Apr 01. |
DOI: | 10.1111/jne.13260 |
Abstrakt: | Refined risk stratification for gastroenteropancreatic neuroendocrine tumors (GEP-NETs) has the potential to improve comparisons of study populations across clinical trials and facilitate drug development. Tumor growth rate (TGR) is a radiological metric with demonstrated prognostic value in well differentiated grade 1 and 2 (G1-2) GEP-NETs, but little is known about TGR in G3 NETs. In this retrospective study of 48 patients with advanced G1-3 GEP-NET, we calculated baseline TGR (TGR (© 2023 The Authors. Journal of Neuroendocrinology published by John Wiley & Sons Ltd on behalf of British Society for Neuroendocrinology.) |
Databáze: | MEDLINE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |