Photoinduced Dynamics at the Water/TiO_{2}(101) Interface.

Autor: Wagstaffe M; Centre for X-ray and Nanoscience (CXNS), Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, 22607 Hamburg, Germany., Dominguez-Castro A; Bremen Center for Computational Material Science (BCCMS), University of Bremen, Am Fallturm 1, 28359 Bremen, Germany., Wenthaus L; Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85 D-22607, Hamburg, Germany., Palutke S; Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85 D-22607, Hamburg, Germany., Kutnyakhov D; Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85 D-22607, Hamburg, Germany., Heber M; Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85 D-22607, Hamburg, Germany., Pressacco F; Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85 D-22607, Hamburg, Germany., Dziarzhytski S; Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85 D-22607, Hamburg, Germany., Gleißner H; Centre for X-ray and Nanoscience (CXNS), Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, 22607 Hamburg, Germany.; Fachbereich Physik Universität Hamburg, Jungiusstr. 9-11, D-20355, Hamburg, Germany.; The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany., Gupta VK; Bremen Center for Computational Material Science (BCCMS), University of Bremen, Am Fallturm 1, 28359 Bremen, Germany., Redlin H; Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85 D-22607, Hamburg, Germany., Dominguez A; Bremen Center for Computational Material Science (BCCMS), University of Bremen, Am Fallturm 1, 28359 Bremen, Germany.; Computational Science and Applied Research Institute (CSAR), 518110, Shenzhen, China.; Beijing Computational Science Research Center (CSRC), 100193, Beijing, China.; Nano-Bio Spectroscopy Group, Departamento de Fisica de Materiales, Universidad del País Vasco, UPV/EHU- 20018 San Sebastián, Spain., Frauenheim T; Bremen Center for Computational Material Science (BCCMS), University of Bremen, Am Fallturm 1, 28359 Bremen, Germany.; Computational Science and Applied Research Institute (CSAR), 518110, Shenzhen, China.; Beijing Computational Science Research Center (CSRC), 100193, Beijing, China., Rubio A; Nano-Bio Spectroscopy Group, Departamento de Fisica de Materiales, Universidad del País Vasco, UPV/EHU- 20018 San Sebastián, Spain.; Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.; Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany.; Center for Computational Quantum Physics, Flatiron Institute, New York 10010, New York, USA., Stierle A; Centre for X-ray and Nanoscience (CXNS), Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, 22607 Hamburg, Germany.; Fachbereich Physik Universität Hamburg, Jungiusstr. 9-11, D-20355, Hamburg, Germany.; The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany., Noei H; Centre for X-ray and Nanoscience (CXNS), Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, 22607 Hamburg, Germany.; The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany.
Jazyk: angličtina
Zdroj: Physical review letters [Phys Rev Lett] 2023 Mar 10; Vol. 130 (10), pp. 108001.
DOI: 10.1103/PhysRevLett.130.108001
Abstrakt: We present a femtosecond time-resolved optical pump-soft x-ray probe photoemission study in which we follow the dynamics of charge transfer at the interface of water and anatase TiO_{2}(101). By combining our observation of transient oxygen O 1s core level peak shifts at submonolayer water coverages with Ehrenfest molecular dynamics simulations we find that ultrafast interfacial hole transfer from TiO_{2} to molecularly adsorbed water is completed within the 285 fs time resolution of the experiment. This is facilitated by the formation of a new hydrogen bond between an O_{2c} site at the surface and a physisorbed water molecule. The calculations fully corroborate our experimental observations and further suggest that this process is preceded by the efficient trapping of the hole at the surface of TiO_{2} by hydroxyl species (-OH), that form following the dissociative adsorption of water. At a water coverage exceeding a monolayer, interfacial charge transfer is suppressed. Our findings are directly applicable to a wide range of photocatalytic systems in which water plays a critical role.
Databáze: MEDLINE