CRISPRa-induced upregulation of human LAMA1 compensates for LAMA2 -deficiency in Merosin-deficient congenital muscular dystrophy.

Autor: Arockiaraj AI; Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, USA.; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, USA., Johnson MA; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, USA., Munir A; Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, USA.; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, USA., Ekambaram P; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, USA., Lucas PC; Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, USA., McAllister-Lucas LM; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, USA., Kemaladewi DU; Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, USA.; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, USA.
Jazyk: angličtina
Zdroj: BioRxiv : the preprint server for biology [bioRxiv] 2023 Mar 07. Date of Electronic Publication: 2023 Mar 07.
DOI: 10.1101/2023.03.06.531347
Abstrakt: Merosin-deficient congenital muscular dystrophy (MDC1A) is an autosomal recessive disorder caused by mutations in the LAMA2 gene, resulting in a defective form of the extracellular matrix protein laminin-α2 (LAMA2). Individuals diagnosed with MDC1A exhibit progressive muscle wasting and declining neuromuscular functions. No treatments for this disorder are currently available. We previously showed that postnatal Lama1 upregulation, achieved through CRISPR activation (CRISPRa), compensates for Lama2 deficiency and prevents neuromuscular pathophysiology in a mouse model of MDC1A. In this study, we assessed the feasibility of upregulating human LAMA1 as a potential therapeutic strategy for individuals with MDC1A, regardless of their mutations. We hypothesized that CRISPRa-mediated upregulation of human LAMA1 would compensate for the lack of LAMA2 and rescue cellular abnormalities in MDC1A fibroblasts. Global transcriptomic and pathway enrichment analyses of fibroblasts collected from individuals carrying pathogenic LAMA2 mutations, compared with healthy controls, indicated higher expression of transcripts encoding proteins that contribute to wound healing, including Transforming Growth Factor-β (TGF-β) and Fibroblast Growth Factor (FGF). These findings were supported by wound-healing assays indicating that MDC1A fibroblasts migrated significantly more rapidly than the controls. Subsequently, we treated the MDC1A fibroblasts with Sa dCas9-2XVP64 and sgRNAs targeting the LAMA1 promoter. We observed robust LAMA1 expression, which was accompanied by significant decreases in cell migration and expression of FGFR2, TGF- β 2, and ACTA2 , which are involved in the wound-healing mechanism in MDC1A fibroblasts. Collectively, our data suggest that CRISPRa-mediated LAMA1 upregulation may be a feasible mutation-independent therapeutic approach for MDC1A. This strategy might be adapted to address other neuromuscular diseases and inherited conditions in which strong compensatory mechanisms have been identified.
Competing Interests: Declaration of interests The authors declare no competing interests.
Databáze: MEDLINE