Changes in calpain-2 expression during glioblastoma progression predisposes tumor cells to temozolomide resistance by minimizing DNA damage and p53-dependent apoptosis.
Autor: | Stillger MN; Institute for Surgical Pathology, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany.; Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany., Chen CY; Institute for Surgical Pathology, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany., Lai ZW; Internal Medicine Research Unit, Pfizer Inc, Cambridge, MA, USA., Li M; Institute for Surgical Pathology, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany.; Department of Pharmaceutical Biology and Biotechnology, Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany., Schäfer A; Department of Neurosurgery, Philipps-University Marburg, Marburg, Germany., Pagenstecher A; Institute of Neuropathology, Philipps-University, Marburg, Germany.; Center for Mind, Brain and Behavior, CMBB, Marburg University, Hans-Meerwein-Strasse 6, 35032, Marburg, Germany., Nimsky C; Department of Neurosurgery, Philipps-University Marburg, Marburg, Germany.; Center for Mind, Brain and Behavior, CMBB, Marburg University, Hans-Meerwein-Strasse 6, 35032, Marburg, Germany., Bartsch JW; Department of Neurosurgery, Philipps-University Marburg, Marburg, Germany. jbartsch@med.uni-marburg.de.; Center for Mind, Brain and Behavior, CMBB, Marburg University, Hans-Meerwein-Strasse 6, 35032, Marburg, Germany. jbartsch@med.uni-marburg.de.; Philipps-University Marburg, Laboratory, Department of Neurosurgery, University Hospital Marburg, Baldingerstr., 35033, Marburg, Germany. jbartsch@med.uni-marburg.de., Schilling O; Institute for Surgical Pathology, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany.; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany. |
---|---|
Jazyk: | angličtina |
Zdroj: | Cancer cell international [Cancer Cell Int] 2023 Mar 17; Vol. 23 (1), pp. 49. Date of Electronic Publication: 2023 Mar 17. |
DOI: | 10.1186/s12935-023-02889-8 |
Abstrakt: | Background: Glioblastoma multiforme (GBM) is characterized by an unfavorable prognosis for patients affected. During standard-of-care chemotherapy using temozolomide (TMZ), tumors acquire resistance thereby causing tumor recurrence. Thus, deciphering essential molecular pathways causing TMZ resistance are of high therapeutic relevance. Methods: Mass spectrometry based proteomics were used to study the GBM proteome. Immunohistochemistry staining of human GBM tissue for either calpain-1 or -2 was performed to locate expression of proteases. In vitro cell based assays were used to measure cell viability and survival of primary patient-derived GBM cells and established GBM cell lines after TMZ ± calpain inhibitor administration. shRNA expression knockdowns of either calpain-1 or calpain-2 were generated to study TMZ sensitivity of the specific subunits. The Comet assay and ɣH2AX signal measurements were performed in order to assess the DNA damage amount and recognition. Finally, quantitative real-time PCR of target proteins was applied to differentiate between transcriptional and post-translational regulation. Results: Calcium-dependent calpain proteases, in particular calpain-2, are more abundant in glioblastoma compared to normal brain and increased in patient-matched initial and recurrent glioblastomas. On the cellular level, pharmacological calpain inhibition increased the sensitivities of primary glioblastoma cells towards TMZ. A genetic knockdown of calpain-2 in U251 cells led to increased caspase-3 cleavage and sensitivity to neocarzinostatin, which rapidly induces DNA strand breakage. We hypothesize that calpain-2 causes desensitization of tumor cells against TMZ by preventing strong DNA damage and subsequent apoptosis via post-translational TP53 inhibition. Indeed, proteomic comparison of U251 control vs. U251 calpain-2 knockdown cells highlights perturbed levels of numerous proteins involved in DNA damage response and downstream pathways affecting TP53 and NF-κB signaling. TP53 showed increased protein abundance, but no transcriptional regulation. Conclusion: TMZ-induced cell death in the presence of calpain-2 expression appears to favor DNA repair and promote cell survival. We conclude from our experiments that calpain-2 expression represents a proteomic mode that is associated with higher resistance via "priming" GBM cells to TMZ chemotherapy. Thus, calpain-2 could serve as a prognostic factor for GBM outcome. (© 2023. The Author(s).) |
Databáze: | MEDLINE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |