Alternative Splicing of the Flip/Flop Cassette and TARP Auxiliary Subunits Engage in a Privileged Relationship That Fine-Tunes AMPA Receptor Gating.
Autor: | Perozzo AM; Integrated Program in Neuroscience, McGill University, Montréal, Quebec H3A 2B4, Canada.; Department of Pharmacology and Therapeutics, McGill University, Montréal, Quebec H3G 1Y6, Canada., Brown PMGE; Integrated Program in Neuroscience, McGill University, Montréal, Quebec H3A 2B4, Canada.; Department of Pharmacology and Therapeutics, McGill University, Montréal, Quebec H3G 1Y6, Canada., Bowie D; Department of Pharmacology and Therapeutics, McGill University, Montréal, Quebec H3G 1Y6, Canada derek.bowie@mcgill.ca. |
---|---|
Jazyk: | angličtina |
Zdroj: | The Journal of neuroscience : the official journal of the Society for Neuroscience [J Neurosci] 2023 Apr 19; Vol. 43 (16), pp. 2837-2849. Date of Electronic Publication: 2023 Mar 17. |
DOI: | 10.1523/JNEUROSCI.2293-22.2023 |
Abstrakt: | Alternative splicing of AMPA-type glutamate receptors (AMPARs) and allosteric modulation by auxiliary subunits, such as transmembrane AMPAR regulatory proteins (TARPs), are two important mechanisms that regulate the time course of glutamatergic neurotransmission. Prior work has shown that alternative splicing of the flip/flop cassette profoundly regulates TARP γ2 modulation, where flip receptor gating exhibits robust sensitivity to TARPs while flop isoforms are relatively insensitive to TARP modulation. Whether this splice variant-specific regulation extends to other auxiliary subunit families, such as cornichons (CNIHs), GSG1L, or CKAMPs, remains unknown. Here, we demonstrate that CNIH-3 modulation is unaffected by AMPAR alternative splicing due to inherent differences in how CNIH-3 and TARP γ2 modify channel gating. CNIH-3 slows receptor deactivation from the outset of current decay, consistent with structural evidence showing its point of contact at the level of the pore. In contrast, TARP γ2 acts via the KGK site of the ligand-binding domain (LBD) to slow the onset of desensitization. Although GSG1L and CKAMP44 primarily slow recovery from desensitization, their effects on channel gating are unaffected by alternative splicing, further underlining that structural events leading to the onset and recovery from desensitization are separable. Together, this work establishes that alternative splicing and TARP auxiliary subunits form a unique partnership that governs fast glutamatergic signaling at central synapses. Since proteomic studies suggest that all native AMPARs co-assemble with at least two TARPs, allosteric coupling between the flip/flop cassette and TARPs may represent a common design element in all AMPAR complexes of the mammalian brain. SIGNIFICANCE STATEMENT All fast excitatory neurotransmission in the mammalian brain is mediated by AMPA-type glutamate receptors (AMPARs). The time course of AMPAR gating can be regulated by two distinct mechanisms: alternative splicing of the flip/flop cassette and association with auxiliary subunits. Although these regulatory mechanisms have been well studied individually, it is not clear whether alternative splicing impacts auxiliary protein modulation of AMPARs. Here, we compare the four main families of AMPAR auxiliary subunits, transmembrane AMPAR regulatory proteins (TARPs; γ2), cornichons (CNIH-3), GSG1L and CKAMPs (CKAMP44), and find a privileged relationship between TARPs and the flip/flop cassette that is not shared by others. The flop cassette acts as a master switch to override TARP action, and this coupling represents a way to fine-tune AMPAR signaling. (Copyright © 2023 the authors.) |
Databáze: | MEDLINE |
Externí odkaz: |