Vanadium MXenes materials for next-generation energy storage devices.

Autor: Sijuade AA; High-Performance Materials Institute, FAMU-FSU College of Engineering, Tallahassee, FL 32310, United States of America., Eze VO; High-Performance Materials Institute, FAMU-FSU College of Engineering, Tallahassee, FL 32310, United States of America., Arnett NY; High-Performance Materials Institute, FAMU-FSU College of Engineering, Tallahassee, FL 32310, United States of America., Okoli OI; High-Performance Materials Institute, FAMU-FSU College of Engineering, Tallahassee, FL 32310, United States of America.; Herff College of Engineering, University of Memphis, Memphis, TN, 38111, United States of America.
Jazyk: angličtina
Zdroj: Nanotechnology [Nanotechnology] 2023 Apr 11; Vol. 34 (25). Date of Electronic Publication: 2023 Apr 11.
DOI: 10.1088/1361-6528/acc539
Abstrakt: Batteries and supercapacitors have emerged as promising candidates for next-generation energy storage technologies. The rapid development of new two-dimensional (2D) electrode materials indicates a new era in energy storage devices. MXenes are a new type of layered 2D transition metal carbides, nitrides, or carbonitrides that have drawn much attention because of their excellent electrical conductivity, electrochemical and hydrophilic properties, large surface area, and attractive topological structure. This review focuses on various synthesis methods to prepare vanadium carbide MXenes with and without etchants like hydrofluoric acid, lithium fluoride, and hydrochloric acid to remove the 'A' layers of the MAX phase. The goal is to demonstrate the utilization of a less toxic etching method to achieve MXenes of comparable properties to those prepared by traditional methods. The influence of intercalation on the effect of high interlayer spacing between the MXene layers and the performance of MXenes as supercapacitor and battery electrodes is also addressed in this review. Lastly, the gaps in the current knowledge for vanadium carbide MXenes in synthesis, scalability, and utilization in more energy storage devices were discussed.
(© 2023 IOP Publishing Ltd.)
Databáze: MEDLINE