One-Pot, Three-Phase Recycling of Metals from Li-Ion Batteries in Rotating, Concentric-Liquid Reactors.

Autor: Quintana C; Center for Algorithmic Synthesis and Evolution, Institute for Basic Science (IBS), Ulsan, 44919, South Korea., Cybulski O; Center for Algorithmic Synthesis and Evolution, Institute for Basic Science (IBS), Ulsan, 44919, South Korea., Mikulak-Klucznik B; Center for Algorithmic Synthesis and Evolution, Institute for Basic Science (IBS), Ulsan, 44919, South Korea., Klucznik T; Center for Algorithmic Synthesis and Evolution, Institute for Basic Science (IBS), Ulsan, 44919, South Korea., Grzybowski BA; Center for Algorithmic Synthesis and Evolution, Institute for Basic Science (IBS), Ulsan, 44919, South Korea.; Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea.
Jazyk: angličtina
Zdroj: Advanced materials (Deerfield Beach, Fla.) [Adv Mater] 2023 Jul; Vol. 35 (29), pp. e2211946. Date of Electronic Publication: 2023 May 04.
DOI: 10.1002/adma.202211946
Abstrakt: Efficient recycling of spent lithium-ion batteries (LIBs) is essential for making their numerous applications sustainable. Hydrometallurgy-based separation methods are an indispensable part of the recycling process but remain limited by the extraction efficiency and selectivity, and typically require numerous binary liquid-liquid extraction steps in which the capacity of the extracting organic phase or partition coefficient of extracted metals become an overall bottleneck. Herein, rotating reactors are described, in which the aqueous feed, organic extractant, and aqueous acceptor phases are all present in the same rotating vessel and can be vigorously stirred and emulsified without the coalescence of aqueous layers. In this arrangement, the extractant molecules are not equilibrated with the feed and, instead, "shuttle" between the feed/extractant and the extractant/acceptor interfaces multiple times, with each such molecule ultimately transferring approximately ten metal ions. This shuttling allows for using extractant concentrations much lower than in previous designs even for extremely concentrated feeds and, simultaneously, ensures unprecedented speed and selectivity of the one-pot processes. These experimental results are accompanied by theoretical considerations of the selectivity versus speed trends as well as discussion of parameters essential for system upscaling.
(© 2023 Wiley-VCH GmbH.)
Databáze: MEDLINE