In situ monitoring of galactolipid digestion by infrared spectroscopy in both model micelles and spinach chloroplasts.
Autor: | Sahaka M; Aix Marseille Univ, CNRS, UMR7281 Bioénergétique et Ingénierie des Protéines, 31 Chemin Joseph Aiguier, 13009 Marseille, France., Mateos-Diaz E; Aix Marseille Univ, CNRS, UMR7281 Bioénergétique et Ingénierie des Protéines, 31 Chemin Joseph Aiguier, 13009 Marseille, France., Amara S; Lipolytech, Zone Luminy Biotech, 163 avenue de Luminy, 13288 Marseille Cedex 09, France., Wattanakul J; Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, United Kingdom; Department of Food Science and Technology, Faculty of Home Economics Technology, Rajamangala University of Technology Krungthep, Bangkok 10120, Thailand., Gray D; Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, United Kingdom., Lafont D; Laboratoire de Chimie Organique 2-GLYCO, ICBMS UMR 5246, CNRS-Université Claude Bernard Lyon 1, Université de Lyon, bâtiment Lederer, 1 rue Victor Grignard, 69622 Villeurbanne Cedex, France., Gontero B; Aix Marseille Univ, CNRS, UMR7281 Bioénergétique et Ingénierie des Protéines, 31 Chemin Joseph Aiguier, 13009 Marseille, France., Launay H; Aix Marseille Univ, CNRS, UMR7281 Bioénergétique et Ingénierie des Protéines, 31 Chemin Joseph Aiguier, 13009 Marseille, France., Carrière F; Aix Marseille Univ, CNRS, UMR7281 Bioénergétique et Ingénierie des Protéines, 31 Chemin Joseph Aiguier, 13009 Marseille, France. Electronic address: carriere@imm.cnrs.fr. |
---|---|
Jazyk: | angličtina |
Zdroj: | Chemistry and physics of lipids [Chem Phys Lipids] 2023 May; Vol. 252, pp. 105291. Date of Electronic Publication: 2023 Mar 12. |
DOI: | 10.1016/j.chemphyslip.2023.105291 |
Abstrakt: | Galactolipids are the main lipids from plant photosynthetic membranes and they can be digested by pancreatic lipase related protein 2 (PLRP2), an enzyme found in the pancreatic secretion in many animal species. Here, we used transmission Fourier-transform infrared spectroscopy (FTIR) to monitor continuously the hydrolysis of galactolipids by PLRP2, in situ and in real time. The method was first developed with a model substrate, a synthetic monogalactosyl diacylglycerol with 8-carbon acyl chains (C8-MGDG), in the form of mixed micelles with a bile salt, sodium taurodeoxycholate (NaTDC). The concentrations of the residual substrate and reaction products (monogalactosylmonoglyceride, MGMG; monogalactosylglycerol, MGG; octanoic acid) were estimated from the carbonyl and carboxylate vibration bands after calibration with reference standards. The results were confirmed by thin layer chromatography analysis (TLC) and specific staining of galactosylated compounds with thymol and sulfuric acid. The method was then applied to the lipolysis of more complex substrates, a natural extract of MGDG with long acyl chains, micellized with NaTDC, and intact chloroplasts isolated from spinach leaves. After a calibration performed with α-linolenic acid, the main fatty acid (FA) found in plant galactolipids, FTIR allowed quantitative measurement of chloroplast lipolysis by PLRP2. A full release of FA from membrane galactolipids was observed, that was not dependent on the presence of bile salts. Nevertheless, the evolution of amide vibration band in FTIR spectra suggested the interaction of membrane proteins with NaTDC and lipolysis products. Competing Interests: Declaration of Competing Interest The authors declare that there are no conflicts of interest. (Copyright © 2023 Elsevier B.V. All rights reserved.) |
Databáze: | MEDLINE |
Externí odkaz: |