Formation of the Holarctic Fauna: Dated molecular phylogenetic and biogeographic insights from the Quedius-lineage of Ground-Dwelling Rove Beetles (Coleoptera, Staphylinidae).
Autor: | Hansen AK; Natural History Museum of Denmark, Zoological Museum, Universitetsparken 15, DK-2100 Copenhagen, Denmark; Natural History Museum Aarhus, Wilhelm Meyers Allé 10, DK-8000 Aarhus, Denmark; Department of Biology, Aarhus University, Ny Munkegade 116, DK-8000 Aarhus, Denmark. Electronic address: akhansen@snm.ku.dk., Brunke AJ; Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Ontario K1A 0C6, Canada., Thomsen PF; Department of Biology, Aarhus University, Ny Munkegade 116, DK-8000 Aarhus, Denmark., Simonsen TJ; Natural History Museum Aarhus, Wilhelm Meyers Allé 10, DK-8000 Aarhus, Denmark., Solodovnikov A; Natural History Museum of Denmark, Zoological Museum, Universitetsparken 15, DK-2100 Copenhagen, Denmark. |
---|---|
Jazyk: | angličtina |
Zdroj: | Molecular phylogenetics and evolution [Mol Phylogenet Evol] 2023 May; Vol. 182, pp. 107749. Date of Electronic Publication: 2023 Mar 05. |
DOI: | 10.1016/j.ympev.2023.107749 |
Abstrakt: | Although the Holarctic fauna has been explored for centuries, many questions on its formation are still unanswered. For example, i) what was the impact of the uplift of the Himalaya and Tibetan Plateau?, ii) what were the timings and climate of the faunal bridges connecting the Nearctic and Palearctic regions?, and iii) how did insect lineages respond to the late Paleogene global cooling and regional aridification? To answer these, we developed a phylogenetic dataset of 1229 nuclear loci for a total of 222 species of rove beetles (Staphylinidae) with emphasis in the tribe Quediini, especially Quedius-lineage and its subclade Quedius sensu stricto. Using eight fossils for calibrating molecular clock, we estimated divergence times and then analysed in BioGeoBEARS paleodistributions of the most recent common ancestor for each target lineage. For each species we generated climatic envelopes of the temperature and precipitation and mapped them across the phylogeny to explore evolutionary shifts. Our results suggest that the warm and humid Himalaya and Tibetan Plateau acted as an evolutionary cradle for the Quedius-lineage originating during the Oligocene from where, in the Early Miocene, the ancestor of the Quedius s. str. dispersed into the West Palearctic. With the climate cooling from the Mid Miocene onwards, new lineages within Quedius s. str. emerged and gradually expanded distributions across the Palearctic. In Late Miocene, a member of the group dispersed to the Nearctic region via Beringia before the closure of this land bridge 5.3 Ma. Paleogene global cooling and regional aridification largely shaped the current biogeographic pattern for Quedius s. str. species, many of them originating during the Pliocene and shifting or contracting their ranges during Pleistocene. Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. (Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.) |
Databáze: | MEDLINE |
Externí odkaz: |