Ultrasonic-assisted nanoencapsulation of kiwi leaves proanthocyanidins in liposome delivery system for enhanced biostability and bioavailability.
Autor: | Lv JM; College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China., Ismail BB; College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China; Department of Food Science & Technology, Faculty of Agriculture, Bayero University, Kano, PMB 3011, Kano, Nigeria. Electronic address: bbismail@zju.edu.cn., Ye XQ; College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China., Zhang XY; College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China., Gu Y; College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China., Chen JC; College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China. Electronic address: jc@zju.edu.cn. |
---|---|
Jazyk: | angličtina |
Zdroj: | Food chemistry [Food Chem] 2023 Aug 01; Vol. 416, pp. 135794. Date of Electronic Publication: 2023 Feb 28. |
DOI: | 10.1016/j.foodchem.2023.135794 |
Abstrakt: | The poor biostability and bioavailability of proanthocyanidins limit their application. In this study, it was hypothesized that encapsulation in lecithin-based nanoliposomes using ultrasonic technology improves the above properties. Based on preliminary experiments, the effects of lecithin mass ratio (1-9%, wt.), pH (3.2-6.8), ultrasonic power (0-540 W), and time (0-10 min) on biostability and bioavailability of purified kiwi leaves proanthocyanidins (PKLPs) were determined. Nanoliposomes prepared optimally with lecithin (5%, wt.), pH = 3.2, ultrasonic power (270 W), and time (5 min) demonstrated a significantly (p < 0.05) improved physicochemical stability, homogeneity, and high encapsulation efficiency (73.84%) relative to control. The PKLPs bioaccessibility during in vitro digestion increased by 2.28-3.07-fold, with a remarkable sustained release and delivery to the small intestine. Similar results were obtained by in vivo analyses, showing over 200% increase in PKLPs bioaccessibility compared to the control. Thus, PKLPs-loaded nanoliposomes are promising candidates for foods and supplements for novel applications. Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. (Copyright © 2023 Elsevier Ltd. All rights reserved.) |
Databáze: | MEDLINE |
Externí odkaz: |