A portable smartphone-based imaging surface plasmon resonance biosensor for allergen detection in plant-based milks.

Autor: Xiao C; Division of Sensor and Actuator Systems, IFM - Linköping University, S58183, Linköping, Sweden., Ross G; Wageningen Food Safety Research (WFSR), Wageningen University & Research, P.O. Box 230, 6700, AE, Wageningen, the Netherlands; Laboratory of Organic Chemistry, Wageningen University, Helix Building 124, Stippeneng 4, 6708 WE, Wageningen, the Netherlands., Nielen MWF; Wageningen Food Safety Research (WFSR), Wageningen University & Research, P.O. Box 230, 6700, AE, Wageningen, the Netherlands; Laboratory of Organic Chemistry, Wageningen University, Helix Building 124, Stippeneng 4, 6708 WE, Wageningen, the Netherlands., Eriksson J; Division of Sensor and Actuator Systems, IFM - Linköping University, S58183, Linköping, Sweden., Salentijn GI; Wageningen Food Safety Research (WFSR), Wageningen University & Research, P.O. Box 230, 6700, AE, Wageningen, the Netherlands; Laboratory of Organic Chemistry, Wageningen University, Helix Building 124, Stippeneng 4, 6708 WE, Wageningen, the Netherlands. Electronic address: gert.salentijn@wur.nl., Mak WC; Division of Sensor and Actuator Systems, IFM - Linköping University, S58183, Linköping, Sweden; Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong, China. Electronic address: wing.cheung.mak@cuhk.edu.hk.
Jazyk: angličtina
Zdroj: Talanta [Talanta] 2023 May 15; Vol. 257, pp. 124366. Date of Electronic Publication: 2023 Feb 20.
DOI: 10.1016/j.talanta.2023.124366
Abstrakt: Food allergies are hypersensitivity immune responses triggered by (traces of) allergenic compounds in foods and drinks. The recent trend towards plant-based and lactose-free diets has driven an increased consumption of plant-based milks (PBMs) with the risk of cross-contamination of various allergenic plant-based proteins during the food manufacturing process. Conventional allergen screening is usually performed in the laboratory, but portable biosensors for on-site screening of food allergens at the production site could improve quality control and food safety. Here, we developed a portable smartphone imaging surface plasmon resonance (iSPR) biosensor composed of a 3D-printed microfluidic SPR chip for the detection of total hazelnut protein (THP) in commercial PBMs and compared its instrumentation and analytical performance with a conventional benchtop SPR. The smartphone iSPR shows similar characteristic sensorgrams compared with the benchtop SPR and enables the detection of trace levels of THP in spiked PBMs with the lowest tested concentration of 0.625 μg/mL THP. The smartphone iSPR achieved LoDs of 0.53, 0.16, 0.14, 0.06, and 0.04 μg/mL THP in 10x-diluted soy, oat, rice, coconut, and almond PBMs, respectively, with good correlation with the conventional benchtop SPR system (R 2 0.950-0.991). The portability and miniaturized characteristics of the smartphone iSPR biosensor platform make it promising for the future on-site detection of food allergens by food producers.
Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2023 The Author(s). Published by Elsevier B.V. All rights reserved.)
Databáze: MEDLINE